Регрессионный анализ данных. Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных

Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
Задачи регрессионного анализа :
а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

Парная регрессия - уравнение связи двух переменных у и х: , где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.
Линейная регрессия: y = a + bx + ε
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:

Регрессии, нелинейные по оцениваемым параметрам: Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.
.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии :

и индекс корреляции - для нелинейной регрессии:

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
.
Допустимый предел значений - не более 8-10%.
Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
,
где - общая сумма квадратов отклонений;
- сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
- остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
,
где n - число единиц совокупности; m - число параметров при переменных х.
F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ; .
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если t табл < t факт то H o отклоняется, т.е. a, b и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или .
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
, .
Формулы для расчета доверительных интервалов имеют следующий вид:
; ;
; ;
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :
,
где
и строится доверительный интервал прогноза:
; ;
где .

Пример решения

Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
Таблица 1.
Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера.

Решение (Вариант №1)

Для расчета параметров a и b линейной регрессии (расчет можно проводить с помощью калькулятора).
решаем систему нормальных уравнений относительно а и b:
По исходным данным рассчитываем :
y x yx x 2 y 2 A i
l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
Ср. знач. (Итого/n) 57,89 54,90 3166,05 3048,34 3383,68 X X 8,1
s 5,74 5,86 X X X X X X
s 2 32,92 34,34 X X X X X X


Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции:

Связь умеренная, обратная.
Определим коэффициент детерминации:

Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем F-критерий:

поскольку 1< F < ¥ , следует рассмотреть F -1 .
Полученное значение указывает на необходимость принять гипотезу Но о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:


где Y=lg(y), X=lg(x), C=lg(a).

Для расчетов используем данные табл. 1.3.

Таблица 1.3

Y X YX Y 2 X 2 A i
1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
σ 0,0425 0,0484 X X X X X X X
σ 2 0,0018 0,0023 X X X X X X X

Рассчитаем С иb:


Получим линейное уравнение:.
Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции и среднюю ошибку аппроксимации

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

. Построению уравнения показательной кривой

предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

Для расчетов используем данные таблицы.

Y x Yx Y 2 x 2 A i
1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
σ 0,0425 5,86 X X X X X X X
σ 2 0,0018 34,339 X X X X X X X

Значения параметров регрессии A и В составили:


Получено линейное уравнение: . Произведем потенцирование полученного уравнения и запишем его в обычной форме:

Тесноту связи оценим через индекс корреляции :

Характеристика причинных зависимостей

Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия.

Признаки по их значению для изучения взаимосвязи делятся на два класса.

Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными (или факторами).

Признаки, изменяющиеся под действием факторных признаков, являются результативными.

Различают следующие формы связи: функциональную и стохастическую. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.

Функциональную связь можно представить следующим уравнением:
y i =f(x i), где: y i - результативный признак; f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.
В реальной природе функциональных связей нет. Они являются лишь абстракциями, полезными при анализе явлений, но упрощающими реальность.

Стохастическая (статистическая или случайная) связь представляет собой связь между величинами, при которой одна из них реагирует на изменение другой величины или других величин изменением закона распределения. Иными словами, при данной связи разным значениям одной переменной соответствуют разные распределения другой переменной. Это обуславливается тем, что зависимая переменная, кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых случайных факторов, а также некоторых неизбежных ошибок измерения переменных. В связи с тем, что значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а могут быть только указаны с определенной вероятностью.

В силу неоднозначности стохастической зависимости между Y и X, в частности представляет интерес усредненная по х схема зависимости, т.е. закономерность в изменении среднего значения – условного математического ожидания Мх(У) (математического ожидания случайной переменной У, найденного при условии, что переменная Х приняла значение х) в зависимости от х.

Частным случаем стохастической связи является корреляционная связь. Корреля́ция (от лат. correlatio - соотношение, взаимосвязь). Прямое токование термина корреляция - стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.

Корреляционной зависимостью между двумя переменными также называют статистическую взаимосвязь между этими переменными, при которой каждому значению одной переменной соответствует определенное среднее значение, т.е. условное математическое ожидание другой. Корреляционная зависимость является частным случаем стохастиче­ской зависимости, при которой изменение значений факторных признаков (х 1 х 2 ..., х n) влечет за собой изменение среднего значения результативно­го признака.



Принято различать следующие виды корреляции:

1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

2. Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков, включенных в исследование.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Назначение регрессионного анализа

Аналитической формой представления причинно-следственных отношений являются регрессионные модели. Научная обоснованность и популярность регрессионного анализа делает его одним из основных математических средств моделирования исследуемого явления. Этот метод применяется для сглаживания экспериментальных данных и получения количественных оценок сравнительного влияния различных факторов на результативную переменную.

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (зависимой переменной или результативного признака) обусловлено влиянием одной или нескольких независимых величин (факторов или предикторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения.

Цели регрессионного анализа:

Оценка функциональной зависимости условного среднего значения результативного признака у от факторных (х 1 ,х 2 , …, х n);

Предсказание значения зависимой переменной с помощью независимой(-ых).

Определение вклада отдельных независимых переменных в вариацию зависимой переменной.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

В регрессионном анализе зара­нее подразумевается наличие причинно-следственных связей между ре­зультативным (У) и факторными х 1 , х 2 ..., х n признаками.

Функция , оп исывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии 1 . Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях независимых переменных .
В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии). В зависимости от вида функции модели делятся на линейные и нелинейные.

Парная регрессионная модель

В силу воздействия неучтенных случайных факторов и причин отдельные наблюдения у будут в большей или меньшей мере отклоняться от функции регрессии f(х). В этом случае уравнение взаимосвязи двух переменных (парная регрессионная модель) может быть представлено в виде:

Y=f(X) + ɛ,

где ɛ - случайная переменная, характеризующая отклонение от функции регрессии. Эту переменную называют возмущающей или возмущением (остатком или ошибкой). Таким образом, в регрессионной модели зависимая переменная Y есть некоторая функция f(X) с точностью до случайного возмущения ɛ.

Рассмотрим классическую линейную модель парной регрессии (КЛМПР). Она имеет вид

у i =β 0 +β 1 х i +ɛ i (i=1,2, …, n), (1)

где у i –объясняемая (результирующая, зависимая, эндогенная переменная);х i – объясняющая (предикторная, факторная, экзогенная) переменная; β 0 , β 1 – числовые коэффициенты; ɛ i – случайная (стохастическая) составляющая или ошибка.

Основные условия (предпосылки, гипотезы) КЛМПР:

1) х i – детерминированная (неслучайная) величина, при этом предполагается, что среди значений х i – не все одинаковые.

2) Математическое ожидание (среднее значение) возмущения ɛ i равно нулю:

М[ɛ i ]=0 (i=1,2, …, n).

3) Дисперсия возмущения постоянна для любых значений i (условие гомоскедастичности):

D[ɛ i ]=σ 2 (i=1,2, …, n).

4) Возмущения для разных наблюдений являются некоррелированными:

cov[ɛ i , ɛ j ]=M[ɛ i , ɛ j ]=0 при i≠j,

где cov[ɛ i , ɛ j ] – коэффициент ковариации (корреляционный момент).

5) Возмущения являются нормально распределенными случайными величинами с нулевым средним значением и дисперсией σ 2:

ɛ i ≈ N(0, σ 2).

Для получения уравнения регрессии достаточно первых четырех предпосылок. Требование выполнения пятой предпосылки необходимо для оценки точности уравнения регрессии и его параметров.

Замечание: Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют (путём логарифмирования или замены переменных) в линейную форму.

Традиционный метод наименьших квадратов (МНК)

Оценкой модели по выборке является уравнение

ŷ i = a 0 + a 1 x i (i=1,2, …, n), (2)

где ŷ i – теоретические (аппроксимирующие) значения зависимой переменной, полученные по уравнению регрессии; a 0 , a 1 - коэффициенты (параметры) уравнения регрессии (выборочные оценки коэффициентов β 0 , β 1 соответственно).

Согласно МНК неизвестные параметры a 0 , a 1 выбирают так, чтобы сумма квадратов отклонений значений ŷ i от эмпирических значений y i (остаточная сумма квадратов) была минимальной:

Q e =∑e i 2 = ∑(y i – ŷ i) 2 = ∑(yi – (a 0 + a 1 x i)) 2 → min, (3)

где e i = y i - ŷ i – выборочная оценка возмущения ɛ i , или остаток регрессии.

Задача сводится к отысканию таких значений параметров a 0 и a 1 , при которых функция Q e принимает наименьшее значение. Заметим, что функция Q e = Q e (a 0 , a 1) есть функция двух переменных a 0 и a 1 до тех пор, пока мы не нашли, а затем зафиксировали их «наилучшие» (в смысле метода наименьших квадратов) значения, а х i , y i – постоянные числа, найденные экспериментально.

Необходимые условия экстремума (3) находятся путем приравнивания к нулю частных производных этой функции двух переменных. В результате получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

(4)

Коэффициент a 1 – выборочный коэффициент регрессии у на х, который показывает на сколько единиц в среднем изменяется переменная у при изменении переменной х на одну единицу своего измерения, то есть вариацию у, приходящуюся на единицу вариации х. Знак a 1 указывает направление этого изменения. Коэффициент a 0 – смещение, согласно (2) равен значению ŷ i при х=0 и может не иметь содержательной интерпретации. За это иногда зависимую переменную называют откликом.

Статистические свойства оценок коэффициентов регрессии:

Оценки коэффициентов a 0 , a 1 являются несмещенными;

Дисперсии оценок a 0 , a 1 уменьшаются (точность оценок увеличивается) при увеличении объема выборки n;

Дисперсия оценки углового коэффициента a 1 уменьшается при увеличении и поэтому желательно выбирать х i так, чтобы их разброс вокруг среднего значения был большим;

При х¯ > 0 (что представляет наибольший интерес) между a 0 и a 1 имеется отрицательная статистическая связь (увеличение a 1 приводит к уменьшению a 0).

Понятия корреляции и регрессии непосредственно связаны меж­ду собой. В корреляционном и регрессионном анализе много общих вычислительных приемов. Они используются для выявления причин­но-следственных соотношений между явлениями и процессами. Одна­ко, если корреляционный анализ позволяет оценить силу и направ­ление стохастической связи, то регрессионный анализ - еще и фор­му зависимости.

Регрессия может быть:

а) в зависимости от числа явлений (переменных):

Простой (регрессия между двумя переменными);

Множественной (регрессия между зависимой переменной (y) и несколькими объясняющими ее переменными (х1, х2...хn);

б) в зависимости от формы:

Линейной (отображается линейной функцией, а между изучае­мыми переменными существуют линейные соотношения);

Нелинейной (отображается нелинейной функцией, между изу­чаемыми переменными связь носит нелинейный характер);

в) по характеру связи между включенными в рассмотрение пе­ременными:

Положительной (увеличение значения объясняющей переменной приводит к увеличению значения зависимой переменной и наоборот);

Отрицательной (с увеличением значения объясняющей переменной значение объясняемой переменной уменьшается);

г) по типу:

Непосредственной (в этом случае причина оказывает прямое воздействие на следствие, т.е. зависимая и объясняющая перемен­ные связаны непосредственно друг с другом);

Косвенной (объясняющая переменная оказывает опосредован­ное действие через третью или ряд других переменных на зависимую переменную);

Ложной (нонсенс регрессия) - может возникнуть при поверх­ностном и формальном подходе к исследуемым процессам и явлениям. Примером бессмысленных является регрессия, устанавливающая связь между уменьшением количества потребляемого алкоголя в нашей стране и уменьшением продажи стирального порошка.

При проведении регрессионного анализа решаются следующие основные задачи:

1. Определение формы зависимости.

2. Определение функции регрессии. Для этого используют ма­тематическое уравнение того или иного типа, позволяющее, во-пер­вых, установить общую тенденцию изменения зависимой перемен­ной, а, во-вторых, вычислить влияние объясняющей переменной (или нескольких переменных) на зависимую переменную.

3. Оценка неизвестных значений зависимой переменной. Полу­ченная математическая зависимость (уравнение регрессии) позволя­ет определять значение зависимой переменной как в пределах ин­тервала заданных значений объясняющих переменных, так и за его пределами. В последнем случае регрессионный анализ выступает в качестве полезного инструмента при прогнозировании изменений со­циально-экономических процессов и явлений (при условии сохране­ния существующих тенденций и взаимосвязей). Обычно длина вре­менного отрезка, на который осуществляется прогнозирование, выбирается не более половины интервала времени, на котором прове­дены наблюдения исходных показателей. Можно осуществить как пас­сивный прогноз, решая задачу экстраполяции, так и активный, ведя рассуждения по известной схеме "если..., то" и подставляя раз­личные значения в одну или несколько объясняющих переменных рег­рессии.



Для построения регрессии используется специальный метод, получивший название метода наименьших квадратов . Этот метод име­ет преимущества перед другими методами сглаживания: сравнительно простое математическое определение искомых параметров и хорошее теоретическое обоснование с вероятностной точки зрения.

При выборе модели регрессии одним из существенных требова­ний к ней является обеспечение наибольшей возможной простоты, позволяющей получить решение с достаточной точностью. Поэтому для установления статистических связей вначале, как правило, рассматривают модель из класса линейных функций (как наиболее простейшего из всех возможных классов функций):

где bi, b2...bj - коэффициенты, определяющие влияние независимых переменных хij на величину yi; аi - свободный член; ei - слу­чайное отклонение, которое отражает влияние неучтенных факторов на зависимую переменную; n - число независимых переменных; N ­число наблюдений, причем должно соблюдаться условие (N . n+1).

Линейная модель может описывать весьма широкий класс различных задач. Однако на практике, в частности в социально-эконо­мических системах, подчас затруднительно применение линейных мо­делей из-за больших ошибок аппроксимации. Поэтому нередко ис­пользуются функции нелинейной множественной регрессии, допускающие линеаризацию. К их числу, например, относится производст­венная функция (степенная функция Кобба-Дугласа), нашедшая при­менение в различных социально-экономических исследованиях. Она имеет вид:

где b 0 - нормировочный множитель, b 1 ...b j - неизвестные коэффи­циенты, e i - случайное отклонение.

Используя натуральные логарифмы, можно преобразовать это уравнение в линейную форму:

Полученная модель позволяет использовать стандартные проце­дуры линейной регрессии, описанные выше. Построив модели двух видов (аддитивные и мультипликативные), можно выбрать наилучшие и провести дальнейшие исследования с меньшими ошибками аппрокси­мации.

Существует хорошо развитая система подбора аппроксимирующих функций - методика группового учета аргументов (МГУА) .

О правильности подобранной модели можно судить по результа­там исследования остатков, являющихся разностями между наблю­даемыми величинами y i и соответствующими прогнозируемыми с по­мощью регрессионного уравнения величинами y i . В этом случае для проверки адекватности модели рассчитывается средняя ошибка ап­проксимации:

Модель считается адекватной, если e находится в пределах не более 15%.

Особо подчеркнем, что применительно к социально-экономичес­ким системам далеко не всегда выполняются основные условия адек­ватности классической регрессионной модели.

Не останавливаясь на всех причинах возникающей неадекват­ности, назовем лишь мультиколлинеарность - самую сложную пробле­му эффективного применения процедур регрессионного анализа при изучении статистических зависимостей. Под мультиколлинеарностью понимается наличие линейной связи между объясняющими переменны­ми.

Это явление:

а) искажает смысл коэффициентов регрессии при их содержа­тельной интерпретации;

б) снижает точность оценивания (возрастает дисперсия оце­нок);

в) усиливает чувствительность оценок коэффициентов к выбо­рочным данным (увеличение объема выборки может сильно повлиять на значения оценок).

Существуют различные приемы снижения мультиколлинеарности. Наиболее доступный способ - устранение одной из двух переменных, если коэффициент корреляции между ними превышает значение, рав­ное по абсолютной величине 0,8. Какую из переменных оставить ре­шают, исходя из содержательных соображений. Затем вновь прово­дится расчет коэффициентов регрессии.

Использование алгоритма пошаговой регрессии позволяет пос­ледовательно включать в модель по одной независимой переменной и анализировать значимость коэффициентов регрессии и мультиколли­неарность переменных. Окончательно в исследуемой зависимости ос­таются только те переменные, которые обеспечивают необходимую значимость коэффициентов регрессии и минимальное влияние мульти­коллинеарности.

Лекция 3.

Регрессионный анализ.

1) Числовые характеристики регрессии

2) Линейная регрессия

3) Нелинейная регрессия

4) Множественная регрессия

5) Использование MS EXCEL для выполнения регрессионного анализа

Контрольно-оценочное средство - тестовые задания

1. Числовые характеристики регрессии

Регрессионный анализ — статистический метод исследования влияния одной или нескольких независимых переменных на зависимую переменную. Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения.

Цели регрессионного анализа

  • Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными).
  • Предсказание значения зависимой переменной с помощью независимой(-ых).
  • Определение вклада отдельных независимых переменных в вариацию зависимой.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

Для проведения регрессионного анализа первоначально необходимо познакомиться с базовыми понятиями статистики и теории вероятности.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение.

Случайные величине делят на две разновидности:

  • · дискретные, которые могут принимать только конкретные, заранее оговоренные значения (например, - значения чисел на верхней грани брошенной игральной кости или порядковые значения текущего месяца);
  • · непрерывные (чаще всего - значения некоторых физических величин: веса, расстояния, температуры и т.п.), которые по законам природы могут принимать любые значения, хотя бы и в некотором интервале.

Закон распределения случайной величины - это соответствие между возможными значениями дискретной случайной величины и ее вероятностями, обычно записывается в таблицу:

Статистическое определение вероятности выражается через относительную частоту случайного события, то есть находится как отношение количества случайных величин к общему числу случайных величин.

Математическим ожиданием дискретной случайной величины X называется сумма произведений значений величины X на вероятности этих значений. Математическое ожидание обозначают или M (X ) .

n

= M (X ) = x 1 p 1 + x 2 p 2 +… + x n p n = S x i p i

i =1

Рассеяние случайной величины относительно её математического ожидания определяется с помощью числовой характеристики, называемой дисперсией. Проще говоря, дисперсия - это разброс случайной величины относительно среднего значения. Для понятия сущности дисперсии рассмотрим пример. Средняя заработная плата по стране составляет около 25 тысяч рублей. Откуда берется эта цифра? Скорее всего, складываются все зарплаты и делятся на количество работников. В данном случае очень большая дисперсия (минимальная зарплата около 4 тыс. руб., а максимальная - около 100 тыс. руб.). Если бы зарплата у всех была одинаковой, то дисперсия была бы равна нулю, и разброса бы не было.

Дисперсией дискретной случайной величины X называют математическое ожидание квадрата разности случайной величины и её математического ожидания:

D = M [ ((X - M (X)) 2 ]

Используя определение математического ожидания для вычисления дисперсии, получаем формулу:

D = S (x i - M (X)) 2 · p i

Дисперсия имеет размерность квадрата случайной величины. В тех случаях, когда нужно иметь числовую характеристику рассеяния возможных значений в той же размерности, что и сама случайная величина, используют среднее квадратичное отклонение.

Средним квадратичным отклонением случайной величины называют корень квадратный из её дисперсии.

Среднее квадратичное отклонение есть мера рассеяния значений случайной величины около ее математического ожидания.

Пример.

Закон распределения случайной величины Х задан следующей таблицей:

Найти её математическое ожидание, дисперсию и среднее квадратичное отклонение.

Используем приведенные выше формулы:

М (Х) = 1 · 0,1 + 2 · 0,4 + 4 · 0,4 + 5 · 0,1 = 3

D = (1-3) 2 · 0,1 + (2 - 3) 2 · 0,4 + (4 - 3) 2 · 0,4 + (5 - 3) 2 · 0,1 = 1,6

Пример.

В денежной лотерее разыгрывается 1 выигрыш в 1000 рублей, 10 выигрышей по 100 рублей и 100 выигрышей по 1 рублю при общем числе билетов 10000. Составьте закон распределения случайного выигрыша Х для владельца одного лотерейного билета и определите математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины.

X 1 = 1000, Х 2 = 100, Х 3 = 1, Х 4 = 0,

Р 1 = 1/10000 = 0,0001, Р 2 = 10/10000 = 0,001, Р 3 = 100/10000 = 0,01, Р 4 = 1 - (Р 1 + Р 2 + Р 3) = 0,9889.

Результаты поместим в таблицу:

Математическое ожидание - сумма парных произведений значения случайной величины на их вероятность. Для данной задачи его целесообразно вычислить по формуле

1000 · 0,0001 + 100 · 0,001 + 1 · 0,01 + 0 · 0,9889 = 0,21 рубля.

Получили настоящую «справедливую» цену билета.

D = S (x i - M (X)) 2 · p i = (1000 - 0,21) 2 0,0001 + (100 - 0,21) 2 0,001 +

+ (1 - 0,21) 2 0,01 + (0 - 0,21) 2 0,9889 ≈ 109,97

Функция распределения непрерывных случайных величин

Величину, которая в результате испытания примет одно возможное значение (при этом заранее неизвестно какое), называется случайной величиной. Как говорилось выше, случайные величины бывают дискретные (прерывные) и непрерывные.

Дискретной называют случайную величину, принимающую отдельные друг от друга возможные значения с определенными вероятностями, которые можно пронумеровать.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

До этого момента мы ограничивались только одной “разновидностью” случайных величин - дискретных, т.е. принимающих конечные значения.

Но теория и практика статистики требуют использовать понятие непрерывной случайной величины - допускающей любые числовые значения, из какого - либо интервала.

Закон распределения непрерывной случайной величины удобно задавать с помощью так называемой функции плотности вероятности. f (х). Вероятность Р (a < X < b) того, что значение, принятое случайной величиной Х, попадет в промежуток (a; b), определяется равенством

Р (a < X < b) = ∫ f (x ) dx

График функции f (х) называется кривой распределения. Геометрически вероятность попадания случайной величины в промежуток (a; b), равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми х = а, х = b.

P(a£X

Если от сложного события вычесть конечное либо счетное множество, вероятность наступления нового события останется неизменной.

Функция f(x) - числовая скалярная функция действительного аргумента x называется плотностью вероятности, и существует в точке x, если в этой точке существует предел:

Свойства плотности вероятности:

  1. Плотность вероятности является неотрицательной функцией, т. е. f(x) ≥ 0

(если все значения случайной величины Х заключены в промежутке (a;b), то последнее

равенство можно записать в виде ∫ f (x) dx = 1).

Рассмотрим теперь функцию F(х) = Р (Х < х). Эта функция называется функцией распределения вероятности случайной величины Х. Функция F(х) существует как для дискретных, так и для непрерывных случайных величин. Если f (x) - функция плотности распределения вероятности

непрерывной случайной величины Х, то F (х) = ∫ f(x) dx = 1).

Из последнего равенства следует, что f (x) = F" (x)

Иногда функцию f(x) называют дифференциальной функцией распределения вероятности, а функцию F(x) - интегральной функцией распределения вероятности.

Отметим важнейшие свойства функции распределения вероятности:

  1. F (х) - неубывающая функция.
  2. F (- ∞) = 0.
  3. F (+ ∞) = 1.

Понятие функции распределения является центральным в теории вероятностей. Используя это понятие, можно дать другое определение непрерывной случайной величины. Случайная величина называется непрерывной, если ее интегральная функция распределения F(х) непрерывна.

Числовые характеристики непрерывных случайных величин

Математическое ожидание, дисперсия и другие параметры любых случайных величин практически всегда вычисляются по формулам, вытекающим из закона распределения.

Для непрерывной случайной величины математическое ожидание вычисляется по формуле:

М (Х) = ∫ x · f(x ) dx

Дисперсия:

D (X) = ∫ (x - М (Х)) 2 f (x ) dx или D (X) = ∫ x 2 f(x ) dx - (М (Х)) 2

2. Линейная регрессия

Пусть составляющие Х и Y двумерной случайной величины (Х, Y) зависимы. Будем считать, что одну из них можно приближенно представить как линейную функцию другой, например

Y ≈ g(Х) = α + βХ, и определим параметры α и β с помощью метода наименьших квадратов.

Определение. Функция g(Х) = α + βХ называется наилучшим приближением Y в смысле метода наименьших квадратов, если математическое ожидание М(Y - g(Х)) 2 принимает наименьшее возможное значение; функцию g(Х) называют среднеквадратической регрессией Y на Х.

Теорема Линейная средняя квадратическая регрессия Y на Х имеет вид:

где - коэффициент корреляции Х иY.

Коэффициенты уравнения.

Можно проверить, что при этих значениях функция функция F(α, β)

F (α, β ) = M (Y - α - βX )² имеет минимум, что доказывает утверждение теоремы.

Определение. Коэффициент называется коэффициентом регрессии Y на Х , а прямая - - прямой среднеквадратической регрессии Y на Х .

Подставив координаты стационарной точки в равенство, можно найти минимальное значение функции F(α, β), равное Эта величина называется остаточной дисперсией Y относительно Х и характеризует величину ошибки, допускаемой при замене Y на

g(Х) = α+βХ. При остаточная дисперсия равна 0, то есть равенство является не приближенным, а точным. Следовательно, при Y и Х связаны линейной функциональной зависимостью. Аналогично можно получить прямую среднеквадратической регрессии Х на Y:

и остаточную дисперсию Х относительно Y. При обе прямые регрессии совпадают. Сопоставив уравнения регрессии У на Х и Х на У и решив систему из уравнений, можно найти точку пересечения прямых регрессии - точку с координатами (т х, т у), называемую центром совместного распределения величин Х и Y.

Алгоритм составления уравнений регрессии рассмотрим из учебника В. Е. Гмурмана «Теория вероятности и математическая статистика» стр. 256.

1) Составить расчетную таблицу, в которой будут записаны номера элементов выборки, варианты выборки, их квадраты и произведение.

2) Вычислить сумму по всем столбцам, кроме номера.

3) Вычислить средние значения для каждой величины, дисперсии и средне квадратические отклонения.

5) Проверить гипотезу о существовании связи между Х и У.

6) Составить уравнения обеих линий регрессии и изобразить графики этих уравнений.

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии

Коэффициент b=

Получим искомое уравнение линии регрессии У на Х:

У = 0,202 Х + 1,024

Аналогично уравнение регрессии Х на У:

Угловой коэффициент прямой линии регрессии У на Х - это выборочный коэффициент регрессии pxy:

Коэффициент b=

Х = 4,119У - 3,714

3. Нелинейная регрессия

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы разных степеней

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных, а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Рассмотрим некоторые функции.

Парабола второй степени приводится к линейному виду с помощью замены: . В результате приходим к двухфакторному уравнению, оценка параметров которого при помощи Метода наименьших квадратов приводит к системе уравнений:

Парабола второй степени обычно применяется в случаях, когда для определенного интервала значений фактора меняется характер связи рассматриваемых признаков: прямая связь меняется на обратную или обратная на прямую.

Равносторонняя гипербола может быть использована для характеристики связи удельных расходов сырья, материалов, топлива от объема выпускаемой продукции, времени обращения товаров от величины товарооборота. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы x и процентом прироста заработной платы y .

Гипербола приводится к линейному уравнению простой заменой: . Также можно использовать Метод наименьших квадратов для составления системы линейных уравнений.

Аналогичным образом приводятся к линейному виду зависимости: , и другие.

Равносторонняя гипербола и полулогарифмическая кривая используют для описания кривой Энгеля (математическое описание взаимосвязи доли расходов на товары длительного пользования и общих сумм расходов (или доходов)). Уравнения, в которых входят, применяются в исследованиях урожайности, трудоемкости сельскохозяйственного производства.

4. Множественная регрессия

Множественная регрессия - уравнение связи с несколькими независимыми переменными:

где - зависимая переменная (результативный признак);

Независимые переменные (факторы).

Для построения уравнения множественной регрессии чаще используются следующие функции:

линейная -

степенная -

экспонента -

гипербола - .

Можно использовать и другие функции, приводимые к линейному виду.

Для оценки параметров уравнения множественной регрессии применяют метод наименьших квадратов (МНК). Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:

Для ее решения может быть применен метод определителей:

где - определитель системы;

Частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

Другой вид уравнения множественной регрессии - уравнение регрессии в стандартизированном масштабе, к уравнению множественной регрессии в стандартизированном масштабе применим МНК.

5. Использование MS EXCEL для выполнения регрессионного анализа

Регрессионный анализ устанавливает формы зависимости между случайной величиной Y (зависимой) и значениями одной или нескольких переменных величин (независимых), причем значения последних считаются точно заданными. Такая зависимость обычно определяется некоторой математической моделью (уравнением регрессии), содержащей несколько неизвестных параметров. В ходе регрессионного анализа на основании выборочных данных находят оценки этих параметров, определяются статистические ошибки оценок или границы доверительных интервалов и проверяется соответствие (адекватность) принятой математической модели экспериментальным данным.

В линейном регрессионном анализе связь между случайными величинами предполагается линейной. В самом простом случае в парной линейной регрессионной модели имеются две переменные Х и Y. И требуется по n парам наблюдений (X1, Y1), (X2, Y2), ..., (Xn, Yn) построить (подобрать) прямую линию, называемую линией регрессии, которая «наилучшим образом» приближает наблюдаемые значения. Уравнение этой линии y=аx+b является регрессионным уравнением. С помощью регрессионного уравнения можно предсказать ожидаемое значение зависимой величины y, соответствующее заданному значению независимой переменной x. В случае, когда рассматривается зависимость между одной зависимой переменной Y и несколькими независимыми X1, X2, ..., Xm, говорят о множественной линейной регрессии.

В этом случае регрессионное уравнение имеет вид

y = a 0 +a 1 x 1 +a 2 x 2 +…+a m x m ,

где a0, a1, a2, …, am - требующие определения коэффициенты регрессии.

Коэффициенты уравнения регрессии определяются при помощи метода наименьших квадратов, добиваясь минимально возможной суммы квадратов расхождений реальных значений переменной Y и вычисленных по регрессионному уравнению. Таким образом, например, уравнение линейной регрессии может быть построено даже в том случае, когда линейная корреляционная связь отсутствует.

Мерой эффективности регрессионной модели является коэффициент детерминации R2 (R-квадрат). Коэффициент детерминации может принимать значения между 0 и 1 определяет, с какой степенью точности полученное регрессионное уравнение описывает (аппроксимирует) исходные данные. Исследуется также значимость регрессионной модели с помощью F-критерия (Фишера) и достоверность отличия коэффициентов a0, a1, a2, …, am от нуля проверяется с помощью критерия Стьюдента.

В Excel экспериментальные данные аппроксимируются линейным уравнением до 16 порядка:

y = a0+a1x1+a2x2+…+a16x16

Для получения коэффициентов линейной регрессии может быть использована процедура «Регрессия» из пакета анализа. Также полную информацию об уравнении линейной регрессии дает функция ЛИНЕЙН. Кроме того, могут быть использованы функции НАКЛОН и ОТРЕЗОК для получения параметров регрессионного уравнения и функция ТЕНДЕНЦИЯ и ПРЕДСКАЗ для получения предсказанных значений Y в требуемых точках (для парной регрессии).

Рассмотрим подробно применение функции ЛИНЕЙН (известные_y, [известные_x], [константа], [статистика]): известные_у - диапазон известных значений зависимого параметра Y. В парном регрессионном анализе может иметь любую форму; в множественном должен быть строкой либо столбцом; известные_х - диапазон известных значений одного или нескольких независимых параметров. Должен иметь ту же форму, что и диапазон Y (для нескольких параметров - соответственно несколько столбцов или строк); константа - логический аргумент. Если исходя из практического смысла задачи регрессионного анализа необходимо, чтобы линия регрессии проходила через начало координат, то есть свободный коэффициент был равен 0, значение этого аргумента следует положить равным 0 (или «ложь»). Если значение положено 1 (или «истина») или опущено, то свободный коэффициент вычисляется обычным образом; статистика - логический аргумент. Если значение положено 1 (или «истина»), то дополнительно возвращается регрессионная статистика (см таблицу), используемая для оценки эффективности и значимости модели. В общем случае для парной регрессии y=аx+b результат применения функции ЛИНЕЙН имеет вид:

Таблица. Выводной диапазон функции ЛИНЕЙН для парного регрессионного анализа

В случае множественного регрессионного анализа для уравнения y=a0+a1x1+a2x2+…+amxm в первой строке выводятся коэффициенты am,…,a1,а0, во второй - стандартные ошибки для этих коэффициентов. В 3-5 строках за исключением первых двух столбцов, заполненных регрессионной статистикой, будет получено значение #Н/Д.

Вводить функцию ЛИНЕЙН следует как формулу массива, выделив вначале массив нужного размера для результата (m+1 столбец и 5 строк, если требуется регрессионная статистика) и завершив ввод формулы нажатием CTRL+SHIFT+ENTER.

Результат для нашего примера:

Кроме этого в программе имеется встроенная функция - Анализ данных на вкладке Данные.

С помощью нее можно также выполнять регрессионный анализ:

На слайде - результат регрессионного анализа, выполненного с помощью Анализа данных.

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

R-квадрат

Нормированный R-квадрат

Стандартная ошибка

Наблюдения

Дисперсионный анализ

Значимость F

Регрессия

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Нижние 95,0%

Верхние 95,0%

Y-пересечение

Переменная X 1

Уравнения регрессии, которые мы смотрели ранее также построены в MS Excel. Для их выполнения сначала строится Точечная диаграмма, затем через контекстное меню выбираем - Добавить линию тренда. В новом окне ставим галочки - Показывать уравнение на диаграмме и поместить на диаграмму величину достоверности апроксимации (R^2).

Литература:

  1. Теория вероятностей и математическая статистика. Гмурман В. Е. Учебное пособие для вузов. - Изд. 10-е, стер. - М.: Высш. шк., 2010. - 479с.
  2. Высшая математика в упражнениях и задачах. Учебное пособие для вузов / Данко П. Е., Попов А. Г., Кожевникова Т. Я., Данко С. П. В 2 ч. - Изд. 6-е, стер. - М.: ООО «Издательство Оникс»: ООО «Издательство «Мир и образование» , 2007. - 416 с.
    1. 3. http://www.machinelearning.ru/wiki/index.php?title=%D0%A0%D0%B5%D0%B3%D1%80%D0%B5%D1%81%D1%81%D0%B8%D1%8F - некоторые сведения о регрессионном анализе

Метод регрессивного анализа применяется для определения технико-экономических параметров продукции, относящейся к конкретному параметрическому ряду, с целью построения и выравнивания ценностных соотношений. Этот метод используется для анализа и обоснования уровня и соотношений цен продукции, характеризующейся наличием одного или нескольких технико-экономических параметров, отражающих основные потребительские свойства. Регрессивный анализ позволяет найти эмпирическую формулу, описывающую зависимость цены от технико-экономических параметров изделий:

P=f(X1X2,...,Xn),

где Р - значение цены единицы изделия, руб.; (Х1, Х2, ... Хп) - технико-экономические параметры изделий.

Метод регрессивного анализа - наиболее совершенный из используемых нормативно-параметрических методов - эффективен при проведении расчетов на основе применения современных информационных технологий и систем. Применение его включает следующие основные этапы:

  • определение классификационных параметрических групп изделий;
  • отбор параметров, в наибольшей степени влияющих на цену изделия;
  • выбор и обоснование формы связи изменения цены при изменении параметров;
  • построение системы нормальных уравнений и расчет коэффициентов регрессии.

Основной квалификационной группой изделий, цена которых подлежит выравниванию, является параметрический ряд, внутри которого изделия могут группироваться по различному исполнению в зависимости от их применения, условий и требований эксплуатации и т. д. При формировании параметрических рядов могут быть применены методы автоматической классификации, которые позволяют из общей массы продукции выделять ее однородные группы. Отбор технико-экономических параметров производится исходя из следующих основных требований:

  • в состав отобранных параметров включаются параметры, зафиксированные в стандартах и технических условиях; помимо технических параметров (мощности, грузоподъемности, скорости и т.д.) используются показатели серийности продукции, коэффициенты сложности, унификации и др.;
  • совокупность отобранных параметров должна достаточно полно характеризовать конструктивные, технологические и эксплуатационные свойства изделий, входящих в ряд, и иметь достаточно тесную корреляционную связь с ценой;
  • параметры не должны быть взаимозависимы.

Для отбора технико-экономических параметров, существенно влияющих на цену, вычисляется матрица коэффициентов парной корреляции. По величине коэффициентов корреляции между параметрами можно судить о тесноте их связи. При этом близкая к нулю корреляция показывает незначительное влияние параметра на цену. Окончательный отбор технико-экономических параметров производится в процессе пошагового регрессивного анализа с использованием компьютерной техники и соответствующих стандартных программ.

В практике ценообразования применяется следующий набор функций:

линейная

P = ao + alXl + ... + antXn,

линейно-степенная

Р = ао + а1Х1 + ... + аnХп + (ап+1Хп) (ап+1Хп) +... + (ап+nХп2) (ап+nХп2)

обратного логарифма

Р = а0 + а1: In Х1 + ... + ап: In Xn,

степенная

P = a0 (X1^a1) (X2^a2) .. (Xn^an)

показательная

P = e^(а1+а1X1+...+аnХn)

гиперболическая

Р = ао + а1:Х1 + а2:Х2 + ... + ап:Хп,

где Р - выравнивание цены; X1 X2,..., Хп - значение технико-экономических параметров изделий ряда; a0, a1 ..., аn - вычисляемые коэффициенты уравнения регресии.

В практической работе по ценообразованию в зависимости от формы связи цен и технико-экономических параметров могут использоваться другие уравнения регрессии. Вид функции связи между ценой и совокупностью технико-экономических параметров может быть задан предварительно или выбран автоматически в процессе обработки на ЭВМ. Теснота корреляционной связи между ценой и совокупностью параметров оценивается по величине множественного коэффициента корреляции. Близость его к единице говорит о тесной связи. По уравнению регрессии получают выравненные (расчетные) значения цен изделий данного параметрического ряда. Для оценки результатов выравнивания вычисляют относительные величины отклонения расчетных значений цен от фактических:

Цр = Рф - Рр: Р х 100

где Рф, Рр - фактическая и расчетная цены.

Величина Цр не должна превышать 8-10%. В случае существенных отклонений расчетных значений от фактических необходимо исследовать:

  • правильность формирования параметрического ряда, так как в его составе могут оказаться изделия, по своим параметрам резко отличающиеся от других изделий ряда. Их надо исключить;
  • правильность отбора технико-экономических параметров. Возможна совокупность параметров, слабо коррелируемая с ценой. В этом случае необходимо продолжить поиск и отбор параметров.

Порядок и методика проведения регрессивного анализа, нахождения неизвестных параметров уравнения и экономическая оценка полученных результатов осуществляются в соответствии с требованиями математической статистики.



Просмотров