9 сокращение дробей. Калькулятор онлайн.Сокращение дробей (неправильных, смешанных)

Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.

Yandex.RTB R-A-339285-1

Смысл сокращения алгебраической дроби

В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.

Сокращение алгебраической дроби представляет собой аналогичное действие.

Определение 1

Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.

К примеру, алгебраическая дробь 3 · x 2 + 6 · x · y 6 · x 3 · y + 12 · x 2 · y 2 может быть сокращена на число 3 , в итоге получим: x 2 + 2 · x · y 6 · x 3 · y + 12 · x 2 · y 2 . Эту же дробь мы можем сократить на переменную х, и это даст нам выражение 3 · x + 6 · y 6 · x 2 · y + 12 · x · y 2 . Также заданную дробь возможно сократить на одночлен 3 · x или любой из многочленов x + 2 · y , 3 · x + 6 · y , x 2 + 2 · x · y или 3 · x 2 + 6 · x · y .

Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.

Все ли алгебраические дроби подлежат сокращению?

Опять же из материалов об обыкновенных дробях мы знаем, что существуют сократимые и несократимые дроби. Несократимые – это дроби, не имеющие общих множителей числителя и знаменателя, отличных от 1 .

С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.

В общих случаях по заданному виду дроби довольно сложно понять, подлежит ли она сокращению. Конечно, в некоторых случаях наличие общего множителя числителя и знаменателя очевидно. Например, в алгебраической дроби 3 · x 2 3 · y совершенно понятно, что общим множителем является число 3 .

В дроби - x · y 5 · x · y · z 3 также мы сразу понимаем, что сократить ее возможно на х, или y , или на х · y . И все же гораздо чаще встречаются примеры алгебраических дробей, когда общий множитель числителя и знаменателя не так просто увидеть, а еще чаще – он попросту отсутствует.

Например, дробь x 3 - 1 x 2 - 1 мы можем сократить на х - 1 , при этом указанный общий множитель в записи отсутствует. А вот дробь x 3 - x 2 + x - 1 x 3 + x 2 + 4 · x + 4 подвергнуть действию сокращения невозможно, поскольку числитель и знаменатель не имеют общего множителя.

Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.

Правило сокращения алгебраических дробей

Правило сокращения алгебраических дробей состоит из двух последовательных действий:

  • нахождение общих множителей числителя и знаменателя;
  • в случае нахождения таковых осуществление непосредственно действия сокращения дроби.

Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.

Само действие сокращения алгебраической дроби базируется на основном свойстве алгебраической дроби, выражаемой равенством undefined , где a , b , c – некие многочлены, причем b и c – ненулевые. Первым шагом дробь приводится к виду a · c b · c , в котором мы сразу замечаем общий множитель c . Вторым шагом – выполняем сокращение, т.е. переход к дроби вида a b .

Характерные примеры

Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:

5 5 = 1 ; - 2 3 - 2 3 = 1 ; x x = 1 ; - 3 , 2 · x 3 - 3 , 2 · x 3 = 1 ; 1 2 · x - x 2 · y 1 2 · x - x 2 · y ;

Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).

К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105

Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 - 2 3 2 - 1 · 5 · 7 = 2 105

(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105

По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.

Пример 1

Задана алгебраическая дробь - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z . Необходимо произвести ее сокращение.

Решение

Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 · 3 · 3 · a · a · a · a · a · b · b · c · z 2 · 3 · a · a · b · b · c · c · c · c · c · c · c · z = = - 3 · 3 · a · a · a 2 · c · c · c · c · c · c = - 9 · a 3 2 · c 6

Однако, более рациональным способом будет запись решения в виде выражения со степенями:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 3 · a 5 · b 2 · c · z 2 · 3 · a 2 · b 2 · c 7 · z = - 3 3 2 · 3 · a 5 a 2 · b 2 b 2 · c c 7 · z z = = - 3 3 - 1 2 · a 5 - 2 1 · 1 · 1 c 7 - 1 · 1 = · - 3 2 · a 3 2 · c 6 = · - 9 · a 3 2 · c 6 .

Ответ: - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 9 · a 3 2 · c 6

Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).

Пример 2

Задана дробь 2 5 · x 0 , 3 · x 3 . Необходимо выполнить ее сокращение.

Решение

Возможно сократить дробь таким образом:

2 5 · x 0 , 3 · x 3 = 2 5 3 10 · x x 3 = 4 3 · 1 x 2 = 4 3 · x 2

Попробуем решить задачу иначе, предварительно избавившись от дробных коэффициентов – умножим числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, т.е. на НОК (5 , 10) = 10 . Тогда получим:

2 5 · x 0 , 3 · x 3 = 10 · 2 5 · x 10 · 0 , 3 · x 3 = 4 · x 3 · x 3 = 4 3 · x 2 .

Ответ: 2 5 · x 0 , 3 · x 3 = 4 3 · x 2

Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.

Пример 3

Задана рациональная дробь 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 . Необходимо ее сократить.

Решение

Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49)

Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:

2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49) = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7)

Хорошо заметно, что возможно сократить дробь на общий множитель b 2 · (a + 7) . Произведем сокращение:

2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Краткое решение без пояснений запишем как цепочку равенств:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 a + 49) b 3 · (a 2 - 49) = = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Ответ: 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · a + 14 a · b - 7 · b .

Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.

Пример 4

Дана алгебраическая дробь 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 . Необходимо осуществить ее сокращение, если это возможно.

Решение

На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:

1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2

Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2 = x · - 2 7 · - 7 2 · 1 5 + x 2 · y 5 · x 2 · y - 1 5 · 3 1 2 = = - 2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10

Теперь становится виден общий множитель, осуществляем сокращение:

2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10 = - 2 7 · x 5 = - 2 35 · x

Ответ: 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = - 2 35 · x .

Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чтобы понять, как сокращать дроби, сначала рассмотрим один пример.

Сократить дробь — значит, разделить числитель и знаменатель на одно и то же . И 360, и 420 оканчиваются на цифру, поэтому можем сократить эту дробь на 2. В новой дроби и 180, и 210 тоже делятся на 2, сокращаем и эту дробь на 2. В числах 90 и 105 сумма цифр делится на 3, поэтому оба эти числа делятся на 3, сокращаем дробь на 3. В новой дроби 30 и 35 оканчиваются на 0 и 5, значит, оба числа делятся на 5, поэтому сокращаем дробь на 5. Получившаяся дробь шесть седьмых — несократимая. Это — окончательный ответ.

К этому же ответу можем прийти другим путем.

И 360, и 420 оканчиваются нулем, значит, они делятся на 10. Сокращаем дробь на 10. В новой дроби и числитель 36, и знаменатель 42 делятся на 2. Сокращаем дробь на 2. В следующей дроби и числитель 18, и знаменатель 21 делятся на 3, значит, сокращаем дробь на 3. Пришли к результату — шесть седьмых.

И еще один вариант решения.

В следующий раз рассмотрим примеры сокращения дробей.


В этой статье мы подробно разберем, как проводится сокращение дробей . Сначала обговорим, что называют сокращением дроби. После этого поговорим о приведении сократимой дроби к несократимому виду. Дальше получим правило сокращения дробей и, наконец, рассмотрим примеры применения этого правила.

Навигация по странице.

Что значит сократить дробь?

Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби . По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.

Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы . Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби , полученная дробь равна исходной.

Для примера, проведем сокращение обыкновенной дроби 8/24 , разделив ее числитель и знаменатель на 2 . Иными словами, сократим дробь 8/24 на 2 . Так как 8:2=4 и 24:2=12 , то в результате такого сокращения получается дробь 4/12 , которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .

Приведение обыкновенных дробей к несократимому виду

Обычно конечной целью сокращения дроби является получение несократимой дроби, которая равна исходной сократимой дроби. Эта цель может быть достигнута, если провести сокращение исходной сократимой дроби на ее числителя и знаменателя. В результате такого сокращения всегда получается несократимая дробь. Действительно, дробь является несократимой, так как из известно, что и - . Здесь же скажем, что наибольший общий делитель числителя и знаменателя дроби является наибольшим числом, на которое можно сократить эту дробь.

Итак, приведение обыкновенной дроби к несократимому виду заключается в делении числителя и знаменателя исходной сократимой дроби на их НОД.

Разберем пример, для чего вернемся к дроби 8/24 и сократим ее на наибольший общий делитель чисел 8 и 24 , который равен 8 . Так как 8:8=1 и 24:8=3 , то мы приходим к несократимой дроби 1/3 . Итак, .

Заметим, что под фразой «сократите дробь» часто подразумевают приведение исходной дроби именно к несократимому виду. Другими словами, сокращением дроби очень часто называют деление числителя и знаменателя на их наибольший общий делитель (а не на любой их общий делитель).

Как сократить дробь? Правило и примеры сокращения дробей

Осталось лишь разобрать правило сокращения дробей, которое и объясняет, как сократить данную дробь.

Правило сокращения дробей состоит из двух шагов:

  • во-первых, находится НОД числителя и знаменателя дроби;
  • во-вторых, проводится деление числителя и знаменателя дроби на их НОД, что дает несократимую дробь, равную исходной.

Разберем пример сокращения дроби по озвученному правилу.

Пример.

Сократите дробь 182/195 .

Решение.

Выполним оба шага, предписанные правилом сокращения дроби.

Сначала находим НОД(182, 195) . Наиболее удобно воспользоваться алгоритмом Евклида (смотрите ): 195=182·1+13 , 182=13·14 , то есть, НОД(182, 195)=13 .

Теперь делим числитель и знаменатель дроби 182/195 на 13 , при этом получаем несократимую дробь 14/15 , которая равна исходной дроби. На этом сокращение дроби закончено.

Кратко решение можно записать так: .

Ответ:

На этом с сокращением дробей можно и закончить. Но для полноты картины рассмотрим еще два способа сокращения дробей, которые обычно применяются в легких случаях.

Иногда числитель и знаменатель сокращаемой дроби несложно . Сократить дробь в этом случае очень просто: нужно лишь убрать все общие множители из числителя и знаменателя.

Стоит отметить, что этот способ напрямую следует из правила сокращения дробей, так как произведение всех общих простых множителей числителя и знаменателя равно их наибольшему общему делителю.

Разберем решение примера.

Пример.

Сократите дробь 360/2 940 .

Решение.

Разложим числитель и знаменатель на простые множители: 360=2·2·2·3·3·5 и 2 940=2·2·3·5·7·7 . Таким образом, .

Теперь избавляемся от общих множителей в числителе и знаменателе, для удобства, их просто зачеркиваем: .

Наконец, перемножаем оставшиеся множители: , и сокращение дроби закончено.

Вот краткая запись решения: .

Ответ:

Рассмотрим еще один способ сокращения дроби, который состоит в последовательном сокращении. Здесь на каждом шаге проводится сокращение дроби на некоторый общий делитель числителя и знаменателя, который либо очевиден, либо легко определяется с помощью

Сокращение дробей нужно для того, чтобы привести дробь к более простому виду, например, в ответе полученном в результате решения выражения.

Сокращение дробей, определение и формула.

Что такое сокращение дробей? Что значит сократить дробь?

Определение:
Сокращение дробей – это разделение у дроби числитель и знаменатель на одно и то же положительное число не равное нулю и единице. В итоге сокращения получается дробь с меньшим числителем и знаменателем, равная предыдущей дроби согласно .

Формула сокращения дробей основного свойства рациональных чисел.

\(\frac{p \times n}{q \times n}=\frac{p}{q}\)

Рассмотрим пример:
Сократите дробь \(\frac{9}{15}\)

Решение:
Мы можем разложить дробь на простые множители и сократить общие множители.

\(\frac{9}{15}=\frac{3 \times 3}{5 \times 3}=\frac{3}{5} \times \color{red} {\frac{3}{3}}=\frac{3}{5} \times 1=\frac{3}{5}\)

Ответ: после сокращения получили дробь \(\frac{3}{5}\). По основному свойству рациональных чисел первоначальная и получившееся дробь равны.

\(\frac{9}{15}=\frac{3}{5}\)

Как сокращать дроби? Сокращение дроби до несократимого вида.

Чтобы нам получить в результате несократимую дробь, нужно найти наибольший общий делитель (НОД) для числителя и знаменателя дроби.

Есть несколько способов найти НОД мы воспользуемся в примере разложением чисел на простые множители.

Получите несократимую дробь \(\frac{48}{136}\).

Решение:
Найдем НОД(48, 136). Распишем числа 48 и 136 на простые множители.
48=2⋅2⋅2⋅2⋅3
136=2⋅2⋅2⋅17
НОД(48, 136)= 2⋅2⋅2=6

\(\frac{48}{136}=\frac{\color{red} {2 \times 2 \times 2} \times 2 \times 3}{\color{red} {2 \times 2 \times 2} \times 17}=\frac{\color{red} {6} \times 2 \times 3}{\color{red} {6} \times 17}=\frac{2 \times 3}{17}=\frac{6}{17}\)

Правило сокращения дроби до несократимого вида.

  1. Нужно найти наибольший общий делитель для числители и знаменателя.
  2. Нужно поделить числитель и знаменатель на наибольший общий делитель в результате деления получить несократимую дробь.

Пример:
Сократите дробь \(\frac{152}{168}\).

Решение:
Найдем НОД(152, 168). Распишем числа 152 и 168 на простые множители.
152=2⋅2⋅2⋅19
168=2⋅2⋅2⋅3⋅7
НОД(152, 168)= 2⋅2⋅2=6

\(\frac{152}{168}=\frac{\color{red} {6} \times 19}{\color{red} {6} \times 21}=\frac{19}{21}\)

Ответ: \(\frac{19}{21}\) несократимая дробь.

Сокращение неправильной дроби.

Как сократить неправильную дробь?
Правила сокращения дробей для правильных и неправильных дробей одинаковы.

Рассмотрим пример:
Сократите неправильную дробь \(\frac{44}{32}\).

Решение:
Распишем на простые множители числитель и знаменатель. А потом общие множители сократим.

\(\frac{44}{32}=\frac{\color{red} {2 \times 2 } \times 11}{\color{red} {2 \times 2 } \times 2 \times 2 \times 2}=\frac{11}{2 \times 2 \times 2}=\frac{11}{8}\)

Сокращение смешанных дробей.

Смешанные дроби по тем же правилам что и обыкновенные дроби. Разница лишь в том, что мы можем целую часть не трогать, а дробную часть сократить или смешанную дробь перевести в неправильную дробь, сократить и перевести обратно в правильную дробь.

Рассмотрим пример:
Сократите смешанную дробь \(2\frac{30}{45}\).

Решение:
Решим двумя способами:
Первый способ:
Распишем дробную часть на простые множители, а целую часть не будем трогать.

\(2\frac{30}{45}=2\frac{2 \times \color{red} {5 \times 3}}{3 \times \color{red} {5 \times 3}}=2\frac{2}{3}\)

Второй способ:
Переведем сначала в неправильную дробь, а потом распишем на простые множители и сократим. Полученную неправильную дробь переведем в правильную.

\(2\frac{30}{45}=\frac{45 \times 2 + 30}{45}=\frac{120}{45}=\frac{2 \times \color{red} {5 \times 3} \times 2 \times 2}{3 \times \color{red} {3 \times 5}}=\frac{2 \times 2 \times 2}{3}=\frac{8}{3}=2\frac{2}{3}\)

Вопросы по теме:
Можно ли сокращать дроби при сложении или вычитании?
Ответ: нет, нужно сначала сложить или вычесть дроби по правилам, а только потом сокращать. Рассмотрим пример:

Вычислите выражение \(\frac{50+20-10}{20}\) .

Решение:
Часто допускают ошибку сокращая одинаковые числа в числителе и знаменателе в нашем случаем число 20, но их сокращать нельзя пока не выполните сложение и вычитание.

\(\frac{50+\color{red} {20}-10}{\color{red} {20}}=\frac{60}{20}=\frac{3 \times 20}{20}=\frac{3}{1}=3\)

На какие числа можно сокращать дробь?
Ответ: можно сокращать дробь на наибольший общий делитель или обычный делитель числителя и знаменателя. Например, дробь \(\frac{100}{150}\).

Распишем на простые множители числа 100 и 150.
100=2⋅2⋅5⋅5
150=2⋅5⋅5⋅3
Наибольшим общим делителем будет число НОД(100, 150)= 2⋅5⋅5=50

\(\frac{100}{150}=\frac{2 \times 50}{3 \times 50}=\frac{2}{3}\)

Получили несократимую дробь \(\frac{2}{3}\).

Но необязательно всегда делить на НОД не всегда нужна несократимая дробь, можно сократить дробь на простой делитель числителя и знаменателя. Например, у числа 100 и 150 общий делитель 2. Сократим дробь \(\frac{100}{150}\) на 2.

\(\frac{100}{150}=\frac{2 \times 50}{2 \times 75}=\frac{50}{75}\)

Получили сократимую дробь \(\frac{50}{75}\).

Какие дроби можно сокращать?
Ответ: сокращать можно дроби у которых числитель и знаменатель имеют общий делитель. Например, дробь \(\frac{4}{8}\). У числа 4 и 8 есть число, на которое они оба делятся это число 2. Поэтому такую дробь можно сократить на число 2.

Пример:
Сравните две дроби \(\frac{2}{3}\) и \(\frac{8}{12}\).

Эти две дроби равны. Рассмотрим подробно дробь \(\frac{8}{12}\):

\(\frac{8}{12}=\frac{2 \times 4}{3 \times 4}=\frac{2}{3} \times \frac{4}{4}=\frac{2}{3} \times 1=\frac{2}{3}\)

Отсюда получаем, \(\frac{8}{12}=\frac{2}{3}\)

Две дроби равны тогда и только тогда, когда одна из них получена путем сокращения другой дроби на общий множитель числителя и знаменателя.

Пример:
Сократите если возможно следующие дроби: а) \(\frac{90}{65}\) б) \(\frac{27}{63}\) в) \(\frac{17}{100}\) г) \(\frac{100}{250}\)

Решение:
а) \(\frac{90}{65}=\frac{2 \times \color{red} {5} \times 3 \times 3}{\color{red} {5} \times 13}=\frac{2 \times 3 \times 3}{13}=\frac{18}{13}\)
б) \(\frac{27}{63}=\frac{\color{red} {3 \times 3} \times 3}{\color{red} {3 \times 3} \times 7}=\frac{3}{7}\)
в) \(\frac{17}{100}\) несократимая дробь
г) \(\frac{100}{250}=\frac{\color{red} {2 \times 5 \times 5} \times 2}{\color{red} {2 \times 5 \times 5} \times 5}=\frac{2}{5}\)

Дети в школе учат правила сокращения дробей в 6 классе. В этой статье мы сначала расскажем вам о том, что же означает это действие, затем разъясним, как сократимую дробь перевести в несократимую. Следующим пунктом будут правила сокращения дробей, а затем уже постепенно подберемся к примерам.

Что значит "сократить дробь "?

Итак, все мы знаем, что обычные дроби делятся на две группы: сократимые и несократимые. Уже по названиям можно понять, что те, что сократимые - сокращаются, а те, которые несократимые - не сокращаются.

  • Сократить дробь - это значит разделить ее знаменатель и числитель на их (отличный от единицы) положительный делитель. В результате, конечно, выходит новая дробь с меньшим знаменателем и числителем. Полученная дробь будет равна исходной дроби.

Стоит отметить, что в книгах по математике с заданием "сократите дробь " это значит, что нужно исходную дробь привести именно к этому несократимому виду. Если говорить простыми словами, то деление знаменателя и числителя на их наибольший общий делитель и есть сокращение.

Как сократить дробь. Правила сокращения дробей (6 класс)

Итак, здесь всего два правила.

  1. Первое правило сокращения дробей: сначала нужно будет найти наибольший общий делитель знаменателя и числителя вашей дроби.
  2. Второе правило: делить знаменатель и числитель на наибольший общий делитель, в конечном итоге получить несократимую дробь.

Как сократить неправильную дробь?

Правила сокращения дробей идентичны правилам сокращения неправильных дробей.

Для того чтобы сократить неправильную дробь, для начала нужно будет расписать на простые множители знаменатель и числитель, а уже потом общие множители сокращать.

Сокращение смешанных дробей

Правила сокращения дробей также распространяется на сокращение смешанных дробей. Есть лишь небольшая разница: целую часть мы можем не трогать, а дробную сократить или смешанную дробь перевести в неправильную, затем сократить и опять перевести в правильную дробь.

Сократить смешанные дроби можно двумя способами.

Первый: расписать дробную часть на простые множители и целую часть тогда не трогать.

Второй способ: перевести сначала в неправильную дробь, расписать на обычные множители, потом сократить дробь. Уже полученную неправильную дробь перевести в правильную.

Примеры можно увидеть на фото выше.

Мы очень надеемся, что смогли помочь вам и вашим детям. Ведь на уроках они очень часто бывают невнимательными, поэтому приходится заниматься интенсивнее на дому самостоятельно.



Просмотров