Физические принципы детектирования элементарных частиц. Детекторы частиц

Детектор элементарных частиц , детектор ионизирующего излучения в экспериментальной физике элементарных частиц - устройство, предназначенное для обнаружения и измерения параметров элементарных частиц высокой энергии, таких как космические лучи или частиц, рождающихся при ядерных распадах или в ускорителях .

Основные типы [ | ]

Устаревшие

Детекторы для радиационной защиты

Детекторы для ядерной физики и физики элементарных частиц

  • Годоскопические камеры
  • Счетчики
  • Трековые детекторы
  • Масс-анализаторы

Детекторы для экспериментов на встречных пучках [ | ]

В физике элементарных частиц понятие «детектор» относится не только к различного типа датчикам для регистрации частиц, но и к большим установкам, созданным на их основе и включающим в себя также инфраструктуру для поддержания их работоспособности (криогенные системы, системы кондиционирования, электропитания), электронику для считывания и первичной обработки данных, вспомогательные системы (напр. сверхпроводящие соленоиды для создания внутри установки магнитного поля). Как правило, такие установки сейчас создаются большими международными группами.

Поскольку постройка большой установки требует значительных финансовых затрат и человеческих усилий, в большинстве случаев она применяется не для одной определенной задачи, а для целого спектра различных измерений. Основными требованиями, предъявляемыми к современному детектору для экспериментов на ускорителе являются:

Для специфических задач могут потребоваться дополнительные требования, например, для экспериментов, измеряющих CP-нарушение в системе B-мезонов важную роль играет координатное разрешение в области взаимодействия пучков.

Условное изображение многослойного универсального детектора для ускорителя на встречных пучках.

Необходимость выполнения этих условий приводит к типичной на сегодняшний день схеме универсального многослойного детектора. В англоязычной литературе такую схему принято сравнивать с луковицей (onion-like structure). В направлении от центра (области взаимодействия пучков) к периферии типичный детектор для ускорителя на встречных пучках состоит из следующих систем:

Трековая система [ | ]

Трековая система предназначена для регистрации траектории прохождения заряженной частицы: координат области взаимодействия, углов вылета. В большинстве детекторов трековая система помещена в магнитное поле, что приводит к искривлению траекторий движения заряженных частиц и позволяет определить их импульс и знак заряда.

Трековая система обычно выполняется на основе или полупроводниковых кремниевых детекторов.

Система идентификации [ | ]

Система идентификации позволяет отделить друг от друга различные типы заряженных частиц. Принцип работы систем идентификации чаще всего заключается в измерении скорости пролета частицы одним из трех способов:

Совместно с измерением импульса частицы в трековой системе это дает информацию о массе, а, следовательно, и о типе частицы.

Калориметр [ | ]

Список работающих или строящихся детекторов для ускорителей на встречных пучках [ | ]

Прикладное применение [ | ]

Помимо научных экспериментов, детекторы элементарных частиц находят применение и в прикладных задачах - в медицине (рентгеновские аппараты с малой дозой облучения,

29 апреля поздно вечером (перенесли пока) NASA запускает на орбиту церновский детектор элементарных частиц AMS-02 . Строили этот детектор 10 лет, его старшие «собратья» уже вовсю работают на Большом адронном коллайдере, то бишь, под землей, а этот — полетит в космос! :)

Вот церновский пресс-релиз , вот будет вестись онлайн-трансляция запуска начиная с 21:30 по средне-европейскому времени, твиттер ЦЕРНа тоже будет передавать сводки. Запуск и всю последующую работу можно отслеживать на сайте эксперимента . А я пока вкратце расскажу про аппарат и научные задачи.

AMS-02 — это самый настоящий детектор элементарных частиц (почти) со всеми его атрибутами. Размер его — 4 метра, масса — 8,5 тонн. Конечно, с такой махиной, как ATLAS , он не сравнится, но для запуска в космос (и установки на МКС) и этого немало.

Если подземные детекторы регистрируют частицы, родившиеся при рукотворном столкновении протонов и иных частиц, то AMS-02 будет регистрировать космические лучи — частицы очень больших энергий, прилетающие к нам из глубокого космоса, разогнанные на «природных ускорителях». Космические лучи, конечно, изучаются уже давно, почти век, но с ними до сих пор связано много загадок.

Самая главная задача нового детектора — со сверхвысокой точностью измерить состав космических лучей. Какова доля антивещества в космических лучях? Как она изменяется с энергией? Нет ли там в небольших количествах каких-то новых тяжелых стабильных частиц (частиц темной материи), которые не удается родить на коллайдерах, но которые смогла породить Вселенная? А может быть, какие-то тонкие особенности в энергетическом спектре обычных частиц укажут на то, что они получились при распаде неизвестных до сих пор сверхтяжелых частиц?

AMS-02 будет изучать эти вопросы, регистрируя пролет частиц космических лучей сквозь вещество детектора и измеряя их импульс, скорость, энерговыделение, заряд. «Окно» оптимальной чувствительности детектора по энергии частиц — от примерно 1 ГэВ до нескольких ТэВ. Это окно покрывает предсказания многих моделей, а также пересекается с окнами чувствительности детекторов на LHC. Но в отличие от Большого адронного коллайдера, тут в качестве ускорителя выступает сама вселенная, и это может иметь далеко идущие последствия.

Субдетекторы и подсистемы AMS-02 ().

Так же, как и классические наземные (точнее, подземные) детекторы, он содержит сразу несколько отдельных детектирующих систем, измеряющих разные характеристики частиц. Только в отличие от них, AMS-02 не вглядывается «вовнутрь», а «смотрит наружу»; он похож скорее на один сегмент передового современного детектора.

Кратко устройство описано на сайте эксперимента. Тут есть и трековые детекторы , восстанавливающие траекторию, черенковские детекторы, измеряющие скорость частиц, электромагнитные калориметры , измеряющие энергию частиц, и другие системы. Разделять разные заряды будут сразу два разных магнита (это я наврал). Разделять заряды будет постоянный магнит на 0,125 Тесла из неодимового сплава. И вдобавок, у AMS-02 есть нечто, чего нет у подземных детекторов — GPS датчики и система слежения за звездами:)

Строилось это всё 10 лет, стоимость — порядка 1,5 гигадолларов. В коллаборации AMS числятся 56 институтов из 16 стран.

Главное, чтоб сейчас эта штука удачно улетела. Завтра вечером будем следить за запуском!

В гл. ХХIII мы познакомились с приборами, служащими для обнаружения микрочастиц,- камерой Вильсона, счетчиком сцинтилляций, газоразрядным счетчиком. Эти детекторы, хотя и применяются в исследованиях элементарных частиц, однако не всегда удобны. Дело в том, что наиболее интересные процессы взаимодействия, сопровождающиеся взаимными превращениями элементарных частиц, происходят весьма редко. Частица должна встретить на своем пути очень много нуклонов или электронов, чтобы произошло интересное столкновение. Практически она должна пройти в плотном веществе путь, измеряемый десятками сантиметров - метрами (yа таком пути заряженная частица с энергией в миллиарды электрон-вольт теряет вследствие ионизации только часть своей энергии).

Однако в камере Вильсона или газоразрядном счетчике чувствительный слой (в пересчете на плотное вещество) крайне тонок. В связи с этим получили применение некоторые другие методы регистрации частиц.

Очень плодотворным оказался фотографический метод. В специальных мелкозернистых фотоэмульсиях каждая заряженная частица, пересекающая эмульсию, оставляет след, который после проявления пластинки обнаруживается под микроскопом в виде цепочки черных зерен. По характеру следа, оставленного частицей в фотоэмульсии, можно установить природу этой частицы - ее заряд, массу, а также энергию. Фотографический метод удобен не только из-за того, что можно использовать толстые слон вещества, но и потому, что в фотопластинке, в отличие от камеры Вильсона, следы заряженных частиц не исчезают вскоре после пролета частицы. При изучении редко случающихся событий пластинки могут экспонироваться длительное время; это особенно полезно в исследованиях космических лучей. Примеры редких событии, запечатленных в фотоэмульсии, приведены выше на рис. 414, 415; особенно интересен рис. 418.

Другой замечательный метод основан на использовании свойств перегретых жидкостей (см. том I, § 299). При нагреве очень чистой жидкости до температуры, даже чуть большей температуры кипения, жидкость не вскипает, так как поверхностное натяжение препятствует образованию пузырьков пара. Американский физик Дональд Глезер (р. 1926) заметил в 1952г., что перегретая жидкость мгновенно вскипает при достаточно интенсивном -облучении; добавочная энергия, выделяемая в следах быстрых электронов, создаваемых в жидкости -излучением, обеспечивает условия для образования пузырьков.

На основе этого явления Глезер разработал так называемую жидкостную пузырьковую камеру. Жидкость при повышенном давлении нагревается до температуры, близкой, но меньшей температуры кипения. Затем давление, а с ним и температура кипения понижаются, и жидкость оказывается перегретой. Вдоль траектории заряженной частицы, пересекающей в этот момент жидкость, формируется след пузырьков пара. При подходящем освещении он может быть запечатлен фотоаппаратом. Как правило, пузырьковые камеры располагают между полюсами сильного электромагнита, магнитное поле искривляет траектории частиц. Измеряя длину следа частицы, радиус его кривизны, плотность пузырьков, можно установить характеристики частицы. Сейчас пузырьковые камеры достигли высокого совершенства; работают, например, камеры, заполненные жидким водородом, с чувствительным объемом в несколько кубических метров. Примеры фотографий следов частиц в пузырьковой камере приведены на рис. 416, 417, 419, 420.

Рис. 418. Превращения частиц, зафиксированные в стопке фотоэмульсий, облученной космическими лучами. В точке невидимая быстрая нейтральная частица вызвала расщепление одного из ядер фотоэмульсии и образовала мезоны («звезда» из 21 следа). Один из мезонов, -мезон, пройдя путь около (на снимке приведены лишь начало и конец следа; при использованном на фотографии увеличении длина всего следа была бы ), остановился в точке и распался по схеме . -мезон, след которого направлен вниз, в точке захватился ядром , вызвав его расщепление. Одним из осколков расщепления было ядро , которое путем -распада превратилось в ядро , мгновенно распадающееся на две летящие в противоположные стороны -частнцы - на снимке они образуют «молоток». -мезон, остановившись, превратился в -мюон (и нейтрино) (точка ). Окончание следа -мюона приведено в правом верхнем углу рисунка; виден след позитрона, образованного при распаде .

Рис. 419. Образование и распад -гиперонов. В водородной пузырьковой камере, находившейся в магнитном поле и облученной антипротонами, зафиксирована реакция . Она произошла в точке окончания следа (см. схему в верхней части рисунка). Нейтральные лямбда- и антилямбда-гипероны, пролетев без образования следа небольшой путь, распадаются по схемам . Антипротон аннигилирует с протоном, образуя два и два -мезона

В ядерной физике и физике элементарных частиц, а также в многочисленных областях науки, использующих в своей практике радиоактивные частицы (медицина, судебная экспертиза, промышленный контроль и т. п.), существенное место отводится вопросам обнаружения, идентификации, спектрального анализа заряженных частиц и фотонов высоких энергий (рентгеновских лучей и гамма-лучей). Сначала рассмотрим детекторы рентгеновского и гамма-излучения, а затем детекторы заряженных частиц.

Детекторы рентгеновского и гамма-излучения.

Классический образ искателя урана предполагает седеющего, измученного жарой субъекта, который бродит по пустыне со счетчиком Гейгера в руке. В наши дни в отношении детекторов достигнут значительный прогресс. Во всех современных детекторах используется следующий эффект: энергия поступающего в детектор фотона используется для ионизации какого-либо атома, при этом благодаря фотоэлектрическому эффекту излучается электрон. С этим электроном поступают по-разному в различных типах датчиков.

Рис. 15.19. Пропорциональный счетчик частиц.

Ионизационная камера, пропорциональный счетчик, счетчик Гейгера. Эти детекторы состоят из цилиндрической (как правило) камеры, имеющей в диаметре несколько сантиметров, и проходящего в центре тонкого провода. Камера бывает заполнена каким-либо газом или смесью газов. С одной стороны имеется узкое «окошко» из материала, пропускающего интересующее вас излучение (пластик, бериллий и т.п.). Центральный провод имеет положительный потенциал и подключается к некоторой электронной схеме. Типичная конструкция такого детектора представлена на рис. 15.19.

Когда в камере появляется квант излучения, он ионизирует атом, и тот испускает фотоэлектрон, последний затем отдает энергию, ионизируя атомы газа до тех пор, пока запас энергии не иссякнет. Оказывается, что электрон отдает около 20 В энергии в расчете на создаваемую им пару электрон-ион, следовательно, полный заряд, высвобожденный фотоэлектроном, пропорционален энергии, которую первоначально несло излучение. В ионизационной камере этот заряд собирается и усиливается усилителем заряда (интегрирующим), который работает также как фотоумножитель. Итак, выходной импульс пропорционален энергии излучения. Аналогичным образом работает пропорциональный счетчик, но на его центральном проводе поддерживается более высокое напряжение, следовательно, притягиваемые к нему электроны вызывают дополнительную ионизацию и результирующий сигнал получается большим. Эффект умножения заряда позволяет использовать пропорциональные счетчики при небольших значениях энергии излучения (порядка киловольт и ниже), когда ионизационные счетчики использовать невозможно. В счетчике Гейгера на центральном проводе поддерживается достаточно высокое напряжение, при котором любая начальная ионизация порождает большой одиночный выходной импульс (фиксированной величины). В данном случае вы получаете хороший большой выходной импульс, но не имеете никакой информации об энергии рентгеновского излучения.

В разд. 15.16 вы познакомитесь с интересным прибором, называемым анализатором ширины импульсов, который позволяет преобразовать последовательность импульсов различной ширины в гистограмму. Если ширина импульса является мерой энергии частицы, то с помощью такого прибора получим не что иное, как энергетический спектр! Итак, с помощью пропорционального счетчика (но не счетчика Гейгера) можно проводить спектрографический анализ излучения.

Подобные газонаполненные счетчики используют в диапазоне значений энергии от до . Пропорциональные счетчики обладают разрешающей способностью порядка 15% при значении энергии (распространенная для излучения калибровка, которую обеспечивает распад железа-55). Они недороги и могут иметь как очень большие, так и очень маленькие габариты, но для них требуется высокостабильный источник питания (умножение растет по экспоненциальному закону с напряжением), и они не отличаются высоким быстродействием (максимальная практически достижимая скорость счета грубо определяется величиной 25 000 имп/с).

Сцинтилляторы. Сцинтилляторы преобразуют энергию фотоэлектрона, электрона Комптона или пары электрон-позитрон в световой импульс, который воспринимается подключенным к прибору фотоумножителем.

Распространенным сцинтиллятором является кристаллический иодид натрия с примесью талия. Как и в пропорциональном счетчике, в этом датчике выходной импульс пропорционален поступающей энергии рентгеновского (или гамма) излучения, а это значит, что с помощью анализатора ширины импульсов можно производить спектрографический анализ (разд. 15.16). Обычно кристалл обеспечивает разрешение порядка 6% при значении энергии 1,3 МэВ (распространенная для гамма-излучения калибровка, которую обеспечивает распад ) и используется в энергетическом диапазоне от до нескольких ГэВ. Световой импульс имеет длительность порядка , следовательно, эти детекторы обладают достаточно высоким быстродействием. Кристаллы могут иметь различные размеры, вплоть до нескольких сантиметров, однако они сильно поглощают воду, следовательно, хранить их следует в закрытом виде. В связи с тем, что свет нужно каким-то образом устранять, кристаллы обычно поставляют в металлическом корпусе, имеющем окошко, закрытое тонкой пластинкой алюминия или бериллия, в котором находится интегральный фотоумножитель.

В сцинтилляторах используют также пластики (органические материалы), которые отличаются тем, что они очень недороги. Разрешение у них хуже, чем у иодида натрия, и используют их в основном в тех случаях, когда имеют дело с энергией выше 1 МэВ. Световые импульсы получаются очень короткими - их длительность составляет примерно 10 не. В биологических исследованиях в качестве сцинтилляторов используют жидкости («коктейли»). При этом материал, исследуемый на радиоактивность, примешивается к «коктейлю», который помещается в темную камеру с фотоумножителем. В биологических лабораториях можно встретить очень красивые приборы, в которых процесс автоматизирован; в них через камеру счетчика одна за другой помещаются различные ампулы и регистрируются результаты.

Детекторы на твердом теле. Как и в других областях электроники, революцию в области обнаружения рентгеновского и гамма-излучения произвели достижения в технологии изготовления кремниевых и германиевых полупроводников. Детекторы на твердом теле работают точно так же, как классические ионизационные камеры, но активный объем камеры заполняется в данном случае непроводящим (чистым) полупроводником. Приложенный потенциал порядка 1000 В вызывает ионизацию и генерирует импульс заряда. При использовании кремния электрон теряет всего около 2 эВ на пару электрон-ион, значит, при той же энергии рентгеновского излучения создается гораздо больше ионов, чем в пропорциональном газонаполненном детекторе, и обеспечивается лучшее энергетическое разрешение благодаря более представительным статистическим данным. Некоторые другие, менее значительные эффекты также способствуют тому, что прибор имеет улучшенные характеристики.

Выпускают несколько разновидностей детекторов на твердом теле: на основе (называются ), («жил-ли») и чистого германия (или IG), отличающихся друг от друга материалом полупроводника и примесей, используемых для того, чтобы обеспечить изолирующие свойства. Все они работают при температуре жидкого азота , и все типы полупроводников с примесью лития нужно постоянно держать в холодном состоянии (повышенная температура влияет на детектор так же плохо, как на свежую рыбу). Типовые детекторы на основе имеют диаметр от 4 до 16 мм и используются в энергетическом диапазоне от 1 до . Детекторы на основе и IG используют при работе с более высокими значениями энергии, от до 10 МэВ. Хорошие детекторы на основе обладают разрешением 150 эВ при значении энергии разрешение в 6-9 раз лучше, чем у пропорциональных счетчиков), германиевые детекторы обладают разрешением порядка при значении энергии 1,3 МэВ .

Рис. 15.20. Рентгеновский спектр листа нержавеющей стали, полученный с помощью аргонового пропорционального счетчика и детектора на основе .

Для того чтобы проиллюстрировать, что дает такое высокое разрешение, мы бомбардировали лист нержавеющей стали протонами с энергией 2 МэВ и проанализировали полученный рентгеновский спектр. Это явление называют рентгеновской эмиссией за счет протонов, и оно является мощным средством анализа веществ, при котором используется взаимное расположение спектров элементов. На рис. 15.20 показан энергетический спектр (полученный с помощью анализатора ширины импульсов), каждому элементу соответствуют два видимых рентгеновских импульса, по крайней мере при использовании детектора на основе . На графике можно видеть железо, никель и хром. Если нижнюю часть графика укрупнить, то можно будет увидеть и другие элементы. При использовании пропорционального счетчика получается «каша».

Рис. 15.21 иллюстрирует аналогичное положение для детекторов гамма-излучения.

Рис. 15.21. Гамма-спектр кобальта-60, полученный с помощью сцинтиллятора на основе иодида натрия и детектора на основе Ge(Li). (Из брошюры Canberra Ge(Li) Detector Systems фирмы Canberra Industries, Inc.)

Рис. 15.22. Криостат с датчиком . (С разрешения фирмы Canberra Industries, )

На этот раз сравниваются между собой сцинтиллятор на основе и датчик на основе . Этот график нам помогли получить коллеги из фирмы Canberra Industries. Выражаем благодарность мистеру Тенчу. Как и в предыдущем случае, преимущество в отношении разрешающей способности оказалось на стороне детекторов на твердом теле.

Детекторы на твердом теле обладают самым высоким энергетическим разрешением среди всех детекторов рентгеновского и гамма-излучения, но у них есть и недостатки: маленькая активная область в большом и неуклюжем корпусе (см., например, рис. 15.22), относительно невысокое быстродействие (время восстановления составляет и более), высокая стоимость и, кроме того, для работы с ними нужно запастись большим терпением (но может быть вам и понравится нянчиться с «пожирателем» жидкого азота, кто знает).

Детекторы заряженных частиц.

Детекторы, которые мы только что описали, предназначены для определения энергии фотонов (рентгеновских и гамма-лучей), но не элементарных частиц. Детекторы элементарных частиц имеют несколько иной облик; кроме того, заряженные частицы отклоняются электрическим и магнитным полями в соответствии с их зарядом, массой и энергией, благодаря чему измерять энергию заряженных частиц значительно проще.

Детекторы с поверхностным энергетическим барьером. Эти германиевые и кремниевые детекторы аналогичны детекторам из . Однако их не требуется охлаждать, а это намного упрощает конструктивное оформление прибора. (А у вас появляется шанс получить свободное время!) Детекторы с поверхностным энергетическим барьером выпускают с диаметрами от 3 до 50 мм. Их используют в энергетическом диапазоне от 1 МэВ до сотен МэВ, они обладают разрешением от 0,2 до 1% при значении энергии альфа-частиц, равном 5,5 МэВ (распространенная энергетическая калибровка, которая обеспечивается при распаде америция-241).

Детекторы Черенкова. При очень высоких значениях энергии (1 ГэВ и выше) заряженная частица может опередить свет в материальной среде и вызвать излучение Черенкова, «видимую ударную волну». Они находят широкое применение при экспериментах в физике высоких энергий.

Ионизационные камеры. Классическую газонаполненную камеру, которую мы рассмотрели выше в связи с рентгеновским излучением, можно использовать также в качестве детектора заряженных частиц. Простейшая ионизационная камера состоит из камеры, заполненной аргоном, и проходящего по всей ее длине провода. В зависимости от того, для работы с какими энергиями предназначена камера, ее длина может составлять от нескольких сантиметров до нескольких десятков сантиметров; в некоторых разновидностях прибора используют не один, а несколько проводов или пластин и другие газы-наполнители.

Душевые камеры. Душевая камера является электронным эквивалентом ионизационной камеры. Электрон попадает в камеру, заполненную жидким аргоном, и создает «душ» из заряженных частиц, которые затем притягиваются к заряженным пластинам.

Специалисты в области физики высоких энергий любят называть такие приборы калориметрами.

Сцинтилляционные камеры. Заряженную частицу можно обнаружить с очень хорошим энергетическим разрешением с помощью фотоумножителей по ультрафиолетовым вспышкам, которые возникают при движении заряженной частицы в камере, заполненной жидким или газообразным аргоном или ксеноном. Сцинтилляционные камеры обладают более высоким быстродействием по сравнению с ионизационными и душевыми камерами.

Дрейфовые камеры. Это новейшее достижение в области физики высоких энергий, которое обусловлено успехами в области быстродействующих диалоговых вычислительных систем. Концепция их проста: камера, в которой под атмосферным давлением находится газ (обычная смесь аргона с этаном) и множество проводов с приложенным к ним напряжением. В камере действуют электрические поля, и когда в нее попадает заряженная частица, ионизирующая газ, ионы оказываются в сфере действия проводов. Отслеживаются амплитуды сигналов и моменты времени по всем проводам (вот здесь и приходит на помощь ЭВМ), и на основе этой информации строится траектория движения частицы. Если в камере действует еще магнитное поле, то можно также определить количество движения.

Дрейфовая камера завоевала положение универсального детектора заряженных частиц для физики высоких энергий. Она может обеспечить пространственное разрешение порядка 0,2 мм и выше для объемов, которые могут вместить даже вас.

В русскоязычной научной и учебной литературе известно очень мало изданий по тематике этой книги, и они уже давно стали библиографической редкостью.
Данное издание выгодно отличает полнота изложения принципов работы детекторных систем, систематичность описания их технического устройства и практической реализации, а также обсуждение области их применения.
Книга содержит обширную библиографию (более 600 ссылок на книжные издания и оригинальные статьи в современных физических журналах) и глоссарий, включающий сжатую информацию об области применения, достоинствах и недостатках каждого из рассмотренных типов детекторов.
Это прекрасное учебное и справочное руководство для всех, кто применяет детекторы излучений и элементарных частиц в своей практической деятельности.

Взаимодействие частиц и излучения с веществом.
Частицы и излучение не могут быть зарегистрированы непосредственно, а лишь через их взаимодействие с веществом. Взаимодействия заряженных частиц, вообще говоря, отличаются от взаимодействий нейтральных частиц, например, фотонов. Каждый процесс взаимодействия может быть основой для некоторого вида детектирования. Существует множество различных типов взаимодействий и, как следствие, большое количество детекторов частиц и излучения. Кроме того, для одной и той же частицы при разных энергиях существенную роль могут играть разные типы взаимодействия.

В этой главе будут подробно рассмотрены основные механизмы взаимодействия частиц с веществом. Некоторые эффекты будут упомянуты при описании конкретных типов детекторов. Мы не будем выводить выражения для сечений из первых принципов, а приведем лишь окончательные результаты в том виде, в котором они применяются для детекторов частиц.

Содержание
Предисловие редакторов перевода Предисловие к русскому изданию Предисловие автора Вступление
1 Взаимодействие частиц и излучения с веществом
1.1 Взаимодействие заряженных частиц с веществом
1.1.1 Потери энергии на ионизацию и возбуждение
1.1.2 Удельная ионизация
1.1.3 Многократное рассеяние
1.1.4 Тормозное излучение
1.1.5 Прямое рождение электрон-позитронных пар
1.1.6 Потери энергии на фотоядерные взаимодействия
1.1.7 Полные потери энергии
1.1.8 Соотношение пробег-энергия для заряженных частиц
1.2 Взаимодействие фотонов
1.2.1 Фотоэффект
1.2.2 Комптон-эффект
1.2.3 Рождение пар
1.2.4 Полное сечение поглощения фотонов
1.3 Сильное взаимодействие адронов
1.4 Дрейф и диффузия в газах
2 Основные характеристики детекторов частиц
3 Единицы измерения излучения
4 Детекторы для ионизационных и трековых измерений
4.1 Ионизационные камеры
4.2 Пропорциональные счетчики
4.3 Счетчики Гейгера
4.4 Стримерные трубки
4.5 Регистрация частиц в жидкостях
4.6 Многопроволочные пропорциональные камеры
4.7 Плоские дрейфовые камеры
4.8 Цилиндрические проволочные камеры
4.8.1 Цилиндрические пропорциональные и дрейфовые камеры
4.8.2 Струйные дрейфовые камеры
4.8.3 Времяпроекционные камеры (ВПК)
4.9 Времяпроекционные камеры с оптическим съемом
4.10 Эффекты старения в проволочных камерах
4.11 Пузырьковые камеры
4.12 Камеры Вильсона
4.13 Стримерные камеры
4.14 Камеры на разрядных трубках
4.15 Искровые камеры
4.16 Ядерные эмульсии
4.17 Кристаллы галоидного серебра
4.18 Рентгеновские пленки
4.19 Термолюминесцентные детекторы
4.20 Радиофотолюминесцентные детекторы
4.21 Пластиковые детекторы
4.22 Сравнение детекторов для ионизационных и трековых измерений
5 Временные измерения
5.1 Фотоумножители
5.2 Сцинтилляционные счетчики
5.3 Плоские искровые счетчики
6 Идентификация частиц
6.1 Нейтронные счетчики
6.2 Детекторы нейтрино
6.3 Счетчики времени пролета
6.4 Черенковские счетчики
6.5 Детекторы переходного излучения (ДПИ)
6.6 Разделение по энергетическим потерям
6.7 Сравнение методов идентификации частиц
7 Измерение энергии
7.1 Твердотельные детекторы
7.2 Калориметры электронов и фотонов
7.3 Адронные калориметры
7.4 Идентификация частиц в калориметрах
7.5 Калибровка и мониторирование калориметров
7.6 Криогенные калориметры
8 Измерение импульса
8.1 Магнитные спектрометры для экспериментов с фиксированной мишенью
8.2 Магнитные спектрометры для специальных приложений
9 Электроника
10 Обработка информации
Приложение А: таблица фундаментальных физических констант
Приложение Б: определение физических величин и их единицы
Список литературы
Алфавитный указатель.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Детекторы элементарных частиц, Справочное издание, Групен К., 1999 - fileskachat.com, быстрое и бесплатное скачивание.



Просмотров