Что такое азот и для чего используется? Свободный (молекулярный) азот

Азот

Азот — элемент главной подгруппы пятой группы второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 7. Обозначается символом N (лат. Nitrogenium). Простое вещество азот — достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N2), из которого на три четверти состоит земная атмосфера.

Его «открывали» несколько раз и разные люди. Его называли по-разному, приписывая едва ли не мистические свойства — и «флогистированный воздух», и «мефитический воздух», и «атмосферный мофетт», да и просто «удушливое вещество». До сих пор у него несколько названий: английский Nitrogen, французский Azote, немецкий Stickstoff, русский «азот»…

История «испорченного воздуха»

Азот (от греческого слова azoos - безжизненный, по-латыни Nitrogenium) - четвертый по распространенности элемент Солнечной системы (после водорода , гелия и кислорода ). Соединения азота - селитра, азотная кислота, аммиак — были известны задолго до получения азота в свободном состоянии.

В 1777 году Генри Кавендиш многократно пропускал воздух над раскалённым углём, а затем обрабатывал его щёлочью. В результате получался остаток, который Кавендиш назвал удушливым (или мефитическим) воздухом. С позиций современной химии ясно, что в реакции с раскалённым углём кислород воздуха связывался в углекислый газ, который затем реагировал со щёлочью. При этом остаток газа представлял собой по большей части азот. Таким образом, Кавендиш выделил азот, но не сумел понять, что это новое простое вещество (химический элемент).

В том же году Кавендиш сообщил об этом опыте Джозефу Пристли. Пристли в это время проводил серию экспериментов, в которых также связывал кислород воздуха и удалял полученный углекислый газ, то есть также получал азот, однако, будучи сторонником господствующей в те времена теории флогистона, совершенно неверно истолковал полученные результаты (по его мнению, процесс был противоположным — не кислород удалялся из газовой смеси, а наоборот, в результате обжига воздух насыщался флогистоном; оставшийся воздух (азот) он и назвал насыщенным флогистоном, то есть флогистированным).

Очевидно, что и Пристли, хотя и смог выделить азот, не сумел понять сути своего открытия, поэтому и не считается первооткрывателем азота. Одновременно схожие эксперименты с тем же результатом проводил и Карл Шееле.

Еще до того времени, в 1772 г., Даниэль Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, увидел, что остающийся после сгорания газ, названный им «удушливым воздухом», не поддерживает дыхания и горения. Лишь в 1787 г. Антуан Лавуазье установил, что «жизненный» и «удушливый» газы, входящие в состав воздуха, это простые вещества, и предложил название «азот».

Ранее, в 1784 г. Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота (от позднелатинского nitrum — селитра и греческого genna — рождаю, произвожу). К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

«Не поддерживающий жизни» жизненно необходим

Хотя название «азот » означает «не поддерживающий жизни», на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота. В результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными.

Дефицит азота характерен для земледелия почти всех стран. Наблюдается дефицит азота и в животноводстве («белковое голодание»). На почвах, бедных доступным азотом, растения плохо развиваются. В прошлом веке довольно богатый источник связанного азота был обнаружен в природе. Это - чилийская селитра, натриевая соль азотной кислоты. Долгое время селитры были главным поставщиком азота для промышленности. Ее месторождение в Южной Америке уникально, практически оно единственное в мире. И не удивительно, что в 1879 году за обладание богатой селитрой пограничной провинцией Тарапака вспыхнула война между Перу, Боливией и Чили. Победителем оказалась Чили. Однако удовлетворить мировую потребность в азотных удобрениях чилийское месторождение, конечно, не могло.

«Азотное голодание» планеты

В атмосфере Земли содержится почти 80% азота, в земной коре - всего 0,04%. Проблема «как связать азот» старая, она — ровесник агрохимии. Возможность связывания азота воздуха кислородом в электрическом разряде первым увидел англичанин Генри Кавендиш. Это было еще в XVIII веке. Но осуществить процесс управляемого синтеза окислов азота удалось лишь в 1904 году. В 1913 году немцы Фриц Габер и Карл Бош предложили аммиачный метод связывания азота. Сейчас, пользуясь этим принципом, сотни заводов всех континентов вырабатывают из воздуха более 20 миллионов тонн связанного азота в год. Три четверти его идет на производство азотных удобрений. Однако дефицит азота на посевных площадях земного шара составляет более 80 миллионов тонн в год. Азота Земле явно не хватает. Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д.

Применение азота

Свободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д.

Жидкий азот применяется как хладагент и для криотерапии. Промышленные применения газообразного азота обусловлены его инертными свойствами. Газообразный азот пожаро- и взрывобезопасен, препятствует окислению, гниению.

В нефтехимии азот применяется для продувки резервуаров и трубопроводов, проверки работы трубопроводов под давлением, увеличения выработки месторождений. В горнодобывающем деле азот может использоваться для создания в шахтах взрывобезопасной среды, для распирания пластов породы.

В производстве электроники азот применяется для продувки областей, не допускающих наличия окисляющего кислорода. Если в процессе, традиционно проходящем с использованием воздуха, окисление или гниение являются негативными факторами — азот может успешно заместить воздух.

Важной областью применения азота является его использование для дальнейшего синтеза самых разнообразных соединений, содержащих азот , таких, как аммиак, азотные удобрения, взрывчатые вещества, красители и т. п. Большие количества азота используются в коксовом производстве («сухое тушение кокса») при выгрузке кокса из коксовых батарей, а также для «передавливания» топлива в ракетах из баков в насосы или двигатели.

Заблуждения: азот — не Дед Мороз

В пищевой промышленности азот зарегистрирован в качестве пищевой добавки E941, как газовая среда для упаковки и хранения, хладагент. Жидкий азот нередко демонстрируется в кинофильмах в качестве вещества, способного мгновенно заморозить достаточно крупные объекты. Это широко распространённая ошибка. Даже для замораживания цветка необходимо достаточно продолжительное время, что связано отчасти с весьма низкой теплоёмкостью азота .

По этой же причине весьма затруднительно охлаждать, скажем, замки до −180 °C и раскалывать их одним ударом. Литр жидкого азота , испаряясь и нагреваясь до 20 °C, образует примерно 700 литров газа. По этой причине не стоит хранить азот в закрытых сосудах, не приспособленных для больших давлений. На этом же факте основан принцип тушения пожаров жидким азотом . Испаряясь, азот вытесняет воздух, необходимый для горения, и пожар прекращается.

Так как азот , в отличие от воды, пены или порошка, просто испаряется и выветривается, азотное пожаротушение — самый эффективный с точки зрения сохранности ценностей механизм тушения пожаров. Заморозка жидким азотом живых существ с возможностью последующей их разморозки проблематична. Проблема заключается в невозможности заморозить (и разморозить) существо достаточно быстро, чтобы неоднородность заморозки не сказалась на его жизненных функциях. Станислав Лем, фантазируя на эту тему в книге «Фиаско», придумал экстренную систему заморозки азотом , в которой шланг с азотом, выбивая зубы, вонзался в рот астронавта и внутрь его подавался обильный поток азота .

Как уже было сказано выше, азот жидкий и газообразный получают из атмосферного воздуха способом глубокого охлаждения.

Показатели качества азота газообразного ГОСТ 9293-74

Наименование показателя Особая Повышенная Повышенная
2 сорт 1 сорт
2 сорт
Объёмная доля азота, не менее 99,996
99,99
99,95
Кислород, не более 0,001
0,001
0,05
Водяной пар в газообразном азоте, не более 0,0007
0,0015
0,004
Водород, не более 0,001 Не нормируется
Не нормируется
Сумма углеродосодержащихся соединений в пересчете на СН 4 , не более 0,001 Не нормируется

Азот – это химический элемент с атомным номером 7. Является газом без запаха, вкуса и цвета.


Таким образом, человек не ощущает присутствия азота в земной атмосфере, между тем как она состоит из этого вещества на 78 процентов. Азот относится к самым распространенным веществам на нашей планете. Часто можно слышать, что без азота не было бы , и это правда. Ведь белковые соединения, из которых состоит все живое, обязательно содержат в себе азот.

Азот в природе

Азот находится в атмосфере в виде молекул, состоящих из двух атомов. Помимо атмосферы, азот есть в мантии Земли и в гумусном слое почвы. Основной источник азота для промышленного производства – это полезные ископаемые.

Однако в последние десятилетия, когда запасы минералов стали истощаться, возникла острая необходимость выделения азота из воздуха в промышленных масштабах. В настоящее время эта проблема решена, и огромные объемы азота для нужд промышленности добываются из атмосферы.

Роль азота в биологии, круговорот азота

На Земле азот претерпевает ряд трансформаций, в которых участвуют и биотические (связанные с жизнью) и абиотические факторы. Из атмосферы и почвы азот поступает в растения, причем не напрямую, а через микроорганизмы. Азотфиксирующие бактерии удерживают и перерабатывают азот, превращая его в форму, легко усваиваемую растениями. В организме растений азот переходит в состав сложных соединений, в частности – белков.

По пищевой цепи эти вещества попадают в организмы травоядных, а затем – хищников. После гибели всего живого азот вновь попадает в почву, где подвергается разложению (аммонификации и денитрификации). Азот фиксируется в грунте, минералах, воде, попадает в атмосферу, и круг повторяется.

Применение азота

После открытия азота (это произошло в 18-м столетии), были хорошо изучены свойства самого вещества, его соединений, возможности использования в хозяйстве. Поскольку запасы азота на нашей планете огромны, данный элемент стал использоваться крайне активно.


Чистый азот применяется в жидком или газообразном виде. Жидкий азот имеет температуру минус 196 градусов по Цельсию и применяется в следующих областях:

в медицине. Жидкий азот является хладагентом при процедурах криотерапии, то есть лечения холодом. Мгновенная заморозка применяется для удаления различных новообразований. В жидком азоте хранят образцы тканей и живые клетки (в частности – сперматозоиды и яйцеклетки). Низкая температура позволяет сохранить биоматериал в течение длительного времени, а затем разморозить и использовать.

Возможность хранить в жидком азоте целые живые организмы, а при необходимости размораживать их без всякого вреда высказана писателями-фантастами. Однако в реальности освоить эту технологию пока не удалось;

в пищевой промышленности жидкий азот используется при розливе жидкостей для создания инертной среды в таре.

Вообще азот применяется в тех областях, где необходима газообразная среда без кислорода, например,

в пожаротушении . Азот вытесняет кислород, без которого процессы горения не поддерживаются и огонь затухает.

Газообразный азот нашел применение в таких отраслях:

производство продуктов питания . Азот используется как инертная газовая среда для сохранения свежести продуктов в упаковке;

в нефтедобывающей промышленности и горном деле . Азотом продувают трубопроводы и резервуары, его нагнетают в шахты для формирования взрывобезопасной газовой среды;

в самолетостроении азотом накачивают шины шасси.

Все вышесказанное относится к применению чистого азота, но не стоит забывать, что этот элемент является исходным сырьем для производства массы всевозможных соединений:

— аммиак. Чрезвычайно востребованное вещество с содержанием азота. Аммиак идет на производство удобрений, полимеров, соды, азотной кислоты. Сам по себе применяется в медицине, изготовлении холодильной техники;

— азотные удобрения;

— взрывчатые вещества;

— красители и т.д.


Азот – не только один из наиболее распространенных химических элементов, но и очень нужный компонент, применяемый во многих отраслях человеческой деятельности.

АЗОТ, N (лат. Nitrogenium * а. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), — химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067. Открыт в 1772 английским исследователем Д. Резерфордом.

Свойства азота

При обычных условиях азот — газ без цвета и запаха. Природный азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Молекула азота двухатомная; атомы связаны ковалентной тройной связью NN. Диаметр молекулы азота, определённый разными способами, 3,15-3,53 А. Молекула азота очень устойчива — энергия диссоциации 942,9 кДж/моль.

Молекулярный азот

Константы молекулярного азота: f плавления — 209,86°С, f кипения — 195,8°С; плотность газообразного азота 1,25 кг/ м 3 , жидкого — 808 кг/м 3 .

Характеристика азота

В твёрдом состоянии азот существует в двух модификациях: кубической а-форме с плотностью 1026,5 кг/м 3 и гексагональной b-форме с плотностью 879,2 кг/м 3 . Теплота плавления 25,5 кДж/кг, теплота испарения 200 кДж/кг. Поверхностное натяжение жидкого азота в контакте с воздухом 8,5.10 -3 Н/м; диэлектрическая проницаемость 1,000538. Растворимость азота в воде (см 3 на 100 мл Н 2 О): 2,33 (0°С), 1,42 (25°С) и 1,32 (60°С). Внешняя электронная оболочка атома азота состоит из 5 электронов. Степени окисления азота меняются от 5 (в N 2 О 5) до -3 (в NH 3).

Соединение азота

Азот при нормальных условиях может реагировать с соединениями переходных металлов (Ti, V, Mo и др.), образуя комплексы либо восстанавливаясь с образованием аммиака и гидразина. С такими активными металлами, как , азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с : N 2 О, NO, N 2 О 5 . С азот соединяется только при высокой температуре и в присутствии катализаторов; при этом образуется аммиак NH 3 . С галогенами азот непосредственно не взаимодействует; поэтому все галогениды азота получают только косвенным путём, например фтористый азот NF 3 — при взаимодействии с аммиаком. С серой также не происходит непосредственного соединения азота. При взаимодействии раскалённого с азотом образуется циан (CN) 2 . При действии на обычный азот электрических разрядов, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. Активный азот весьма энергично взаимодействует с кислородом, водородом, парами , и некоторыми металлами.

Азот — один из самых распространённых элементов на Земле, причём основная его масса (около 4.10 15 т) сосредоточена в свободном состоянии в . Ежегодно при вулканической деятельности в атмосферу выделяется 2.10 6 т азота. Незначительная часть азота концентрируется в (среднее содержание в литосфере 1,9.10 -3 %). Природные соединения азота — хлористый аммоний и различные нитраты (селитры). Нитриды азота могут образовываться только при высоких температурах и давлениях, что, по-видимому, имело место на самых ранних стадиях развития Земли. Крупные скопления селитры встречаются только в условиях сухого пустынного климата ( , и др.). Небольшие количества связанного азота находятся в (1-2,5%) и (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1 %) и живых организмах (0,3%). Азот входит в состав белковых молекул и многих естественных органических соединений.

Круговорот азота в природе

В природе осуществляется круговорот азота, который включает цикл молекулярного атмосферного азота в биосфере, цикл в атмосфере химически связанного азота, круговорот захоронённого с органическим веществом поверхностного азота в литосфере с возвратом его обратно в атмосферу. Азот для промышленности ранее добывался целиком из месторождений природных селитр, число которых в мире весьма ограничено. Особенно крупные залежи азота в виде азотнокислого натрия находятся в Чили; добыча селитры в отдельные годы составляла более 3 млн. т.

Свойства элементов V-A подгруппы

Элемент

Азот
N

Фосфор
Р

Мышьяк
As

Сурьма
Sb

Висмут
Bi

Свойство

Порядковый номер элемента

7

15

33

51

83

Относительная атомная масса

14,007

30,974

74,922

121,75

208,980

Температура плавления,С 0

-210

44,1
(белый)

817
(4МПа)

631

271

Температура кипения,С 0

-196

280
(белый)

613

1380

1560

Плотность г/см 3

0,96
(твёрдый)

1,82
(белый)

5,72

6,68

9,80

Степени окисления

+5, +3,-3

+5, +3,-3

+5, +3,-3

+5, +3,-3

+5, +3,-3

1. Строение атомов химических элементов

Название

химического

элемента

Схема строения атома

Электронное строение последнего энергоуровня

Формула высшего оксида R 2 O 5

Формула летучего водородного соединения

RH 3

1. Азот

N+7) 2) 5

…2s 2 2p 3

N 2 O 5

NH 3

2. Фосфор

P+15) 2) 8) 5

…3s 2 3p 3

P 2 O 5

PH 3

3. Мышьяк

As+33) 2) 8) 18) 5

…4s 2 4p 3

As 2 O 5

AsH 3

4. Сурьма

Sb+51) 2) 8) 18) 18) 5

…5s 2 5p 3

Sb 2 O 5

SbH 3

5. Висмут

Bi+83) 2) 8) 18) 32) 18) 5

…6s 2 6p 3

Bi 2 O 5

BiH 3


Наличие трех неспаренных электронов на внешнем энергетическом уровне объясняет то, что в нормальном, невозбужденном состоянии валентность элементов подгруппы азота равна трем.

У атомов элементов подгруппы азота (кроме азота - внешний уровень азота состоит только из двух подуровней - 2s и 2p) на внешних энергетических уровнях имеются вакантные ячейки d-подуровня, поэтому они могут распарить один электрон с s-подуровня и перенести его на d-подуровень. Таким образом, валентность фосфора, мышьяка, сурьмы и висмута равна 5.

Элементы группы азота образуют с водородом соединения состава RH 3 , а с кислородом оксиды вида - R 2 O 3 и R 2 O 5 . Оксидам соответствуют кислоты HRO 2 и HRO 3 (и ортокислоты H 3 PO 4 , кроме азота).

Высшая степень окисления этих элементов равна +5, а низшая -3.

Так как заряд ядра атомов увеличивается, число электронов на внешнем уровне постоянно, число энергетических уровней в атомах растёт и радиус атома увеличивается от азота к висмуту, притяжение отрицательных электронов к положительному ядру ослабевает испособность к отдаче электронов увеличивается, и, следовательно, в подгруппе азота с ростом порядкового номера неметаллические свойства убывают, а металлические усиливаются.

Азот - неметалл, висмут - металл. От азота к висмуту прочность соединений RH 3 уменьшается, а прочность кислородных соединений возрастает.

Наибольшее значение среди элементов подгруппы азота имеют азот и фосфор .

Азот, физические и химические свойства, получение и применение

1. Азот – химический элемент

N +7) 2) 5

1 s 2 2 s 2 2 p 3 незавершённый внешний уровень, p -элемент, неметалл

Ar (N )=14

2. Возможные степени окисления

Из-за наличия трёх неспаренных электронов азот очень активен, находится только в виде соединений. Азот проявляет в соединениях степени окисления от «-3» до «+5»


3. Азот – простое вещество, строение молекулы, физические свойства

Азо́т (от греч. ἀ ζωτος - безжизненный, лат. Nitrogenium ), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье . Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.

N 2 – ковалентная неполярная связь, тройная (σ, 2π), молекулярная кристаллическая решётка

Вывод:

1. Малая реакционная способность при обычной температуре

2. Газ, без цвета, запаха, легче воздуха

Mr ( B оздуха)/ Mr ( N 2 ) = 29/28

4. Химические свойства азота

N – окислитель (0 → -3)

N – восстановитель (0 → +5)

1. С металлами образуются нитриды M x N y

- при нагревании с Mg и щелочно-земельными и щелочными:

3С a + N 2 = Ca 3 N 2 (при t)

- c Li при к t комнатной

Нитриды разлагаются водой

Са 3 N 2 + 6H 2 O = 3Ca(OH) 2 + 2NH 3

2. С водородом

3 H 2 + N 2 ↔ 2 NH 3

(условия - T , p , kat )

N 2 + O 2 ↔ 2 NO – Q

(при t= 2000 C)

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

5. Получение:

В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (–195,8°C), чем другого компонента воздуха - кислорода (–182,9°C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH 4 Cl к твердому нитриту натрия NaNO 2:

NaNO 2 + NH 4 Cl = NaCl + N 2 + 2H 2 O.

Можно также нагревать твердый нитрит аммония:

NH 4 NO 2 = N 2 + 2H 2 O. ОПЫТ

6. Применение:

В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения.

7. Биологическая роль

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16-18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла,гемоглобина и др. В составе живых клеток по числу атомов азота около 2%, по массовой доле - около 2,5 % (четвертое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9·10 11 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитраN 2 → Li 3 N → NH 3

№2. Составьте уравнения реакции взаимодействия азота с кислородом, магнием и водородом. Для каждой реакции составьте электронный баланс, укажите окислитель и восстановитель.

№3. В одном цилиндре находится газ азот, в другом - кислород, а в третьем - углекислый газ. Как различить эти газы?

№4. В некоторых горючих газах содержится в виде примеси свободный азот. Может ли при сгорании таких газов в обыкновенных газовых плитах образоваться оксид азота (II). Почему?

Азот химический элемент, атомный номер 7, атомная масса 14,0067. В воздухе свободный азот (в виде молекул N 2) составляет 78,09%. Азот немного легче воздуха, плотность 1,2506 кг/м 3 при нулевой температуре и нормальном давлении. Температура кипения -195,8°C. Критическая температура -147°C и критическое давление 3,39 МПа. Азот бесцветный, без запаха и вкуса, нетоксичен, невоспламеняемый, невзрывоопасен и не поддерживающий горение газ в газообразном состоянии при обычной температуре обладает высокой инертностью. Химическая формула - N. В обычных условиях молекула азота двухатомная - N 2 .

Производство азота в промышленных масштабах основано на получении его из воздуха (см. ).

До сих пор ведутся споры о том, кто был первооткрывателем азота. В 1772 г. шотландский врач Даниель Резерфорд (Daniel Rutherford) пропуская воздух через раскаленный уголь, а потом через водный раствор щелочи - получил газ, который он назвал «ядовитый газ». Оказалось, что горящая лучинка, внесенная в сосуд, наполненный азотом, гаснет, а живое существо в атмосфере этого газа быстро гибнет.

В тоже время, проводя подобный опыт, азот получили британский физик Генри Кавендшин (Henry Cavendish) назвав его «удушливый воздух», британский естествоиспытатель Джозеф Пристли (Joseph Priestley) дал ему имя «дефлогистированный воздух», шведский химик Карл Вильгельм Шееле (Carl Wilhelm Scheele) - «испорченный воздух».

Окончательное имя «азот» данному газу дал французский ученый Антуан Лоран Лавуазье (Antoine Laurent de Lavoisier). Слово «азот» греческого происхождения и означает «безжизненный» .

Возникает логичный вопрос: «Если азот образует , какой смысл его использовать для сварки нержавеющих сталей, в составе которых есть карбидообразующие элементы?»

Все дело в том, что даже сравнительно небольшое содержание азота увеличивает тепловую мощность дуги . Из-за этой особенности, азот чаще всего используют не для сварки, а для плазменной резки .

Азот относится к нетоксичным газам, но может действовать как простой асфиксант (удушающий газ). Удушье наступает тогда, когда уровень азота в воздухе сокращает содержание кислорода на 75% или ниже нормальной концентрации.

Выпускают азот по газообразным и жидким. Для сварки и плазменной резки применяют газообразный азот 1-го (99,6% азота) и 2-го (99,0% азота) сортов.

Хранят и транспортируют его в сжатом состоянии в стальных баллонах по . Баллоны окрашены в черный цвет и надписью желтыми буквами «АЗОТ» на верхней цилиндрической части.



Просмотров