Какие объекты считаются радиационно опасными. Радиационно опасные объекты и их характеристика - реферат. Вопросы и задания

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РАДИАЦИОННО-ОПАСНЫЕ ОБЪЕКТЫ. АВАРИИ С ВЫБРОСОМ РАДИОАКТИВНЫХ ВЕЩЕСТВ. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ. ДОЗА ОБЛУЧЕНИЯ. ПОСЛЕДСТВИЯ РАДИАЦИОННЫХ АВАРИЙ. СТЕПЕНИ ЛУЧЕВОЙ БОЛЕЗНИ. ЙОДНАЯ ПРОФИЛАКТИКА. ДЕЙСТВИЕ НАСЕЛЕНИЯ ПРИ АВАРИЯХ С ВЫБРОСОМ РАДИОАКТИВНЫХ ВЕЩЕСТВ

В настоящее время на многих ОЭ, военных объектах, НЦ и т.д. используются РВ. Отдельные системы, блоки и устройства этих объектов преобразуют энергию делящихся ядер в электрическую и другие виды энергии. Ряд предприятий использует РВ в технологических процессах или хранят их на своей территории. Все эти предприятия относятся к объектам с ядерными компонентами. Однако радиационно-опасными из них являются далеко не все.

Радиационно-опасный объект (РОО) - это объект, на котором хранят, перерабатывают или транспортируют РВ, при аварии или разрушении которого может произойти облучение людей, с/х животных, растений, ОЭ и окружающей природной среды.

К радиационно-опасным объектам (РОО) относятся:

Предприятия ядерного топливного цикла (ЯТЦ): урановой и радиохимической промышленности, места переработки и захоронения радиоактивных отходов;

Атомные станции (АС): атомные электрические станции (АЭС), атомные теплоэлектроцентрали (АТЭЦ), атомные станции теплоснабжения (АСТ);

Объекты с ядерными энергетическими установками и (ЯЭУ): корабельными, космическими, войсковыми атомными электростанциями (ВАЭС);

Ядерные боеприпасы (ЯБ) и склады их хранения.

Предприятия ЯТЦ осуществляют добычу урановой руды, ее обогащение, изготовление топливных элементов для ядерных энергетических реакторов (ЯЭР), переработку радиоактивных отходов, их хранение и окончательное размещение.

Предприятия ядерного топливного цикла (ЯТЦ) можно разделить на 3 группы:

Предприятия урановой промышленности;

Радиохимические заводы;

Места захоронения радиоактивных отходов.

К предприятиям урановой промышленности относятся объекты, осуществляющие:

Добычу урановой руды;

Обработку урановой руды, включающие предприятия по очистке урановой руды на специальных дробилках в несколько этапов и обогащению методом газовой диффузии.

Процесс приготовления ЯТ включает получение порошкообразного диоксида урана, его таблетирование, изготовление тепловыделяющих элементов (ТВЭЛов) и тепловыделяющих сборок (ТВС), которые в последующем используются в ЯЭР.

Отработанное в ядерных реакторах топливо может отправляться на захоронение, но может быть переработано с извлечением необходимых компонентов и частично повторно использовано.

Переработка отработанного топлива осуществляется на радиохимических заводах. Радиоактивные отходы радиохимических заводов направляются на захоронение, которое осуществляется в бетонных емкостях в естественных или искусственных полостях.

Наиболее характерными авариями на предприятиях ЯТЦ являются:

Возгорание горючих компонентов и радиоактивных материалов;

Превышение критической массы делящихся веществ;

Появление течей и разрывов в резервуарах-хранилищах;

Характерные аварии с готовыми изделиями.

Под аварией на РОО понимается выход из строя или повреждение отдельных узлов и механизмов объекта во время его эксплуатации, приводящей к РЗ. Выбросы и истечения РВ из реактора характеризуются следующими поражающими факторами:

Газо-аэрозольная смесь радионуклидов распространяется в виде облака на сотни км и испускает мощный поток ионизирующих излучений (ИИ);

РЗ местности, имеет длительный характер в результате разброса высокоактивных осколков ЯТ на территории АС и осаждения радиоактивных частиц из газо-аэрозольного облака.

Радиоактивное загрязнение - это присутствие РВ на поверхности, внутри материала, в воздухе, в теле человека или другом месте, в количестве, превышающем уровни, установленные нормами радиационной безопасности (НРБ-99).

При авариях на АС радиоактивное загрязнение имеет следующие особенности:

РЗ местности и атмосферы имеет сложную зависимость от исходных параметров (типа и мощности реактора, времени его работы, характера аварии и т.п.) и метеоусловий, вследствие чего прогнозирование его возможных масштабов весьма затруднено и носит ориентировочный характер;

Естественный спад активности радионуклидов существенно более длителен, чем распад продуктов ядерных взрывов;

Смесь выбрасываемых из реактора РВ обогащена долгоживущими радионуклидами (плутоний - 239, цезий - 137 и др.), причем относительный вклад в общую активность альфа-излучающих изотопов с течением времени будет увеличиваться. В результате большие площади на длительное время окажутся загрязненными биологически опасными радионуклидами, которые в последующем могут быть вовлечены в миграционные процессы местности;

Малые размеры радиоактивных частиц (средний размер около 2 мкм) способствуют их глубокому проникновению в микротрещины и краску, что затрудняет проведение работ по дезактивации;

Пылеобразование приводит к поступлению в организм через органы дыхания мелкодисперсионных продуктов деления, прежде всего, биологически опасных «горячих» частиц;

Наличие в атмосфере облака газо-аэрозольной смеси радионуклидов, испускающей мощный поток ИИ;

Осаждение высокоактивных осколков конструкций реактора и графита как на территории АС, так и в виде пятен по следу облака;

Стационарный характер источника загрязнения, продолжительность выбросов во времени на небольшую высоту (1,5-2 км) и частые изменения метеоусловий приводят к азимутальной неравномерности загрязнения местности, изменению уровней радиации в отдельных районах во времени и образованию радиоактивных зон загрязнения в виде пятен.

Радиоактивное загрязнение (РЗ) местности при аварии на АС качественно характеризуется теми же параметрами, что и РЗ при ядерном взрыве, однако имеет целый ряд особенностей существенно влияющих на состав и содержание мероприятий по защите населения и территорий. Это следующие особенности:

1. Состав радиоактивных изотопов в смеси, выбрасываемой в атмосферу из ядерного реактора, существенно различен для каждого реактора, зависит от многих его параметров, что в свою очередь, определяет различный характер уменьшения активности и интенсивности излучения со временем.

2. Значительная часть (около 30%) энергии при ядерном взрыве затрачивается на проникающую радиацию, в то время как при аварии на АС проникающая радиация как поражающий фактор практически отсутствует.

3. Выброс РВ в атмосферу при ядерном взрыве происходит практически мгновенно, а при аварии на АС - сравнительно длительный промежуток времени.

4. При аварии на АС облако РВ поднимается на высоту до 1,5 км и переносится ветром в нижних турбулентных слоях атмосферы.

5. При аварии на АС количество поднятой с грунта пыли будет незначительно.

6. При аварии на АС короткоживущие радионуклиды представляют большую опасность, чем при ЯВ.

7. Выбрасываемая при аварии на АС смесь РВ обогащена долгоживущими изотопами цезия-137, стронция-90, плутония-239 и т.д., что способствует их длительной последующей миграции.

8. при аварии на АС с разрушением активной зоны реактора на территорию непосредственно прилегающую к реактору, выбрасывается большое количество разрушенных конструкций реактора, в т.ч. кусков облученного графита, что является источником мощного ИИ.

9. При аварии на АС возможно «прожигание» основания реактора и фундамента сооружения энергоблока с последующим проникновением радиоактивных частиц в грунт и грунтовые воды.

10. При аварии на АС общее количество выброшенных РВ зависит от типа реактора, его мощности, продолжительности работы от момента последней загрузки ЯТ, а также вида аварии.

11. При ядерном взрыве определяющим в накоплении дозы излучения в организме человека является внешнее воздействие гамма-излучения от продуктов взрыва. При аварии на АС оно существенно дополняется дозой облучения от загрязненной окружающей среды и дозой внутреннего облучения.

12. При аварии на АС спад мощности дозы облучения происходит значительно медленнее, чем при ядерном взрыве.

Ядерный взрыв помимо ударной волны и светового излучения, сопровождается проникающей радиацией (мощный поток гамма-излучения и быстрых нейтронов), а также образованием большого количества радионуклидов (радиоизотопов). При ядерном взрыве образуется до 200 радиоактивных изотопов 30 химических элементов, а при аварии на РОО с выбросом радионуклидов образуется более 100 радиоизотопов 37 химических элементов, ядра атомов которых способны самопроизвольно распадаться и превращаться в ядра атомов других элементов и испускать при этом невидимые излучения.

Радиоактивное излучение, нейтронный поток и рентгеновское излучение называют ИОНИЗИРУЮЩИМИ ИЗЛУЧЕНИЯМИ.

Виды ИИ: альфа-излучение, бета-излучение, гамма-излучение и быстрые нейтроны.

Альфа-излучение - поток положительно заряженных частиц (ядер атомов гелия). Скорость движения около 20 тыс.км/сек. путь пробега несколько см (4-10), на 1 см пути образуется 20-30 тыс. пар ионов. Задерживается одеждой, листом бумаги. Эти частицы опасны при попадании вовнутрь организма.

Бета-излучение - поток отрицательно заряженных частиц (электронов) или позитронов. Скорость движения около 300 тыс.км/сек. Путь пробега до 20 м. На 1 см пути образуется до 150 пар ионов. Задерживается одеждой до 40-60%.

Гамма-излучение - ЭМИ, по свойствам оно близко к рентгеновскому, но обладает значительно большей скоростью и энергией. Скорость распространения равна 300 тыс. км/сек. Обладает большой проникающей способностью, но малой ионизацией. На 1 см пути образуется 2 пары ионов. Это основное поражающее излучение для живых организмов. Защиту обеспечивают защитные сооружения.

радиоактивный ионизирующий излучение нейтронный

Особенности биологического действия ионизирующих излучений

Высокая эффективность поглощенной энергии. Даже малые количества могут вызвать глубокие биологические изменения в организме;

Наличие скрытого периода (период мнимого благополучия);

Действие малых доз может накапливаться (кумуляция);

Воздействует не только на данный организм, но и на его потомство;

Различные органы организма имеют свою чувствительность к облучению;

Не каждый организм в целом одинаково реагирует на облучение.

Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия.

В результате воздействия ИИ на организм в тканях могут происходить сложные физические, химические и биологические процессы. Известно, что в биологической ткани 60-70% по массе составляет вода. В результате ионизации молекулы воды (Н2О) образуют свободные радикалы Н0 и ОН0, которые в присутствии кислорода О2 образуют гидратный оксид НО2 и перекись водорода Н2О2. Оба они являются сильными окислителями, вступают в химические реакции с молекулами белка и ферментов. Нарушаются обменные процессы в организме, подавляется активность ферментных систем, замедляется и прекращается рост тканей, появляются токсины. А это приводит к нарушению жизнедеятельности отдельных функций или систем в целом, т.е. заболеванию лучевой болезнью.

Поражающее действие ИИ характеризуется дозой (Д) облучения. ДОЗА - это энергия излучения, поглощенная единицей массы (объема).

Различают:

Экспозиционная доза (рентген)

Поглощенная доза (рад)

Эквивалентная доза (бэр).

В результате воздействия ИИ нарушаются нормальное течение биохимических процессов и обмен веществ в организме. В зависимости от величины поглощенной дозы и индивидуальных особенностей организма вызванные изменения могут быть обратимыми и необратимыми. При небольших дозах пораженная ткань восстанавливается. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма. Любой вид ИИ вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (РВ попадают внутрь).

Биологический эффект ИИ зависит от суммарной дозы и времени воздействия, вида излучения, размеров облучаемой поверхности. При однократном облучении всего тела возможны биологические нарушения в зависимости от суммарной дозы поглощенной.

Поглощенная доза излучения, вызывающая поражение отдельных частей тела, а затем смерть, превышает смертельную поглощенную дозу облучения всего тела.

Важным фактором при воздействии ИИ на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает.

Внешнее облучение альфа, а также бета-частицами менее опасно. Они имеют небольшой пробег в ткани и не достигают кроветворных и других внутренних органов. При внешнем облучении необходимо учитывать гамма и нейтронное облучение, которое проникает в ткань на большую глубину и разрушают ее.

Степень поражения организма зависит от размера облучаемой поверхности. С уменьшением облучаемой поверхности уменьшается и биологический эффект. РВ могут попасть внутрь организма при вдыхании воздуха, зараженного радиоактивными элементами, с зараженной пищей или водой и, наконец, через кожу, а также при заражении открытых ран.

Степень опасности зависит также от скорости выведения веществ из организма. На скорость выведения РВ большое влияние оказывает период полураспада данного РВ.

Полученная поглощенная доза приводит к развитию лучевой болезни, в зависимости от дозы облучения различают следующие степени лучевой болезни:

1. Первая степень (легкая) - 100-250 рад, Р

2. Вторая степень (средняя) - 250-400 рад, Р

3. Третья степень (тяжелая) - 400-600 рад, Р

4. Четвертая степень (кр. тяжелая) - более 600 рад. Р.

Дозы внешнего облучения, не приводящие к снижению работоспособности людей:

При однократном облучении (до 4 суток) - не более 50 рад., из них за первые сутки не более 30 рад.

При многократном облучении: в течение одного месяца - не более 100 рад., в течение 3-х месяцев - не более 200 рад, в течение года - не более 300 рад.

В мирное время все страны, использующие АЭ на производстве, в медицине и науке, имеют национальные нормы и правила радиационной безопасности, основанные на рекомендациях. (Международной комиссии по РЗ). С 1976 г. в нашей стране действуют Нормы радиационной безопасности, уточненные в 2000 г. Их цель - предупредить неблагоприятные последствия от воздействия ИИ, а также исключить переоблучение людей при авариях на ЯЭУ и ликвидации их последствий.

Нормами РБ регламентированы три категории облучаемых лиц.

После аварии на ЧАЭС были установлены временные допустимые уровни загрязнения после проведения дезактивационных работ:

Поверхность дорог вне насел. пункта - 1,5 мр/час;

Поверхность дорог в насел. пункте - 0,7 мр/час;

Открытые поверхности территорий насел. пунктов, земельных угодий, тротуаров, площадок, полей - 0,7 мр/час;

Наружные поверхности жилых домов и служебных помещений - 0,7 мр/час;

Внутренние поверхности - 0,3 мр/час.

По нормам МАГАТЕ при уровне радиации на местности 200 мр/час необходимо проводить эвакуацию населения и дезактивацию местности.

Для оценки загрязнения открытых поверхностей радиоактивными частицами можно использовать ориентировочно соотношение между мощностью дозы на местности (р/ч) и плотностью РЗ (КИ/м2).

Загрязнение плотностью 1 КИ/м2 эквивалентно мощности дозы 10 р/час. (10 МКИ/см2 соответствует 1р/ч).

В целях исключения массовых радиационных поражений и переоблучения сверх установленных доз действия рабочих, служащих, л/с ГО и остального населения строго регламентируются и подчиняются определенному режиму РЗ. Под ним понимается порядок действия людей, применение средств и способов защиты в зонах РЗ, предусматривающий максимальное уменьшение возможных доз облучения:

Радиационная защита (укрытие л/с в ЗС, ПРУ, подвалах, домах и т.п.)

Эвакуация населения;

Применение СИЗ органов дыхания и кожи;

Йодная профилактика.

Эвакуация, как крайняя мера. обеспечивающая защиту, проводится только в исключительных случаях.

Проведение йодной профилактики

При авариях на ЯЭУ в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131 (период полураспада 8 дней). Попадая в организм, он сорбируется щитовидной железой и поражает ее. Наиболее эффективным методом защиты при этом является прием внутрь лекарственных препаратов стабильного йода (йодная профилактика). Максимальный защитный эффект достигается при заблаговременном или одновременном с поступлением радиоактивного йода приеме стабильно аналога.

Защитный эффект препарата резко снижается в случае его приема, спустя 2 часа после поступления в организм радиоактивного йода. Однако даже через 6 часов после разового поступления йода-131 прием препарата стабильного йода может снизить дозу облучения щитовидной железы примерно в 2 раза. Однократный прием 100 мг стабильного йода обеспечивает защитный эффект в течение 24 ч. В условиях длительного поступления радиоактивного йода в организм человека необходимы повторные приемы препаратов стабильного йода 1 раз в сутки в течение всего срока, когда возможно поступление йода-131, но не более 10 суток для взрослых и не более 2 суток для беременных женщин, детей до 3 лет.

Для снижения последствий воздействия ИИ на организм применяются противорадиационные препараты (радиопротекторы). Они повышают устойчивость организма к воздействию ИИ или снижают тяжесть клинического течения лучевой болезни, ослабляют ранние симптомы поражения радиацией - тошноту и рвоту (Индивидуальная аптечка АИ-2).

Действия населения, связанные с выбросом радиоактивных веществ

1. При оповещении.

Получив сообщение об опасности РЗ, немедленно наденьте противогаз, детей до 1,5 лет поместите в КЗД и идите в ЗС.

Если ЗС далеко и у вас нет противогаза, оставайтесь дома и слушайте сообщения штаба ГО, закройте окна, двери, зашторьте их плотной тканью или одеялом, закройте вентиляционные люки, отдушины, заклейте щели в оконных рамах. Загерметизируйте продукты питания и создайте в ёмкостях запас воды.

Оповестите соседей о полученной опасности.

Помните! Главную опасность для людей на местности, загрязненной РВ, представляет внутреннее облучение. Поэтому, необходимо защитить органы дыхания, используя СИЗ.

Во избежание поражения кожных покровов необходимо использовать плащи с капюшоном, комбинезоны, резиновую обувь, перчатки.

2. Соблюдение правил РБ и личной гигиены.

Для предупреждения или ослабления воздействия на организм РВ:

Максимально ограничьте пребывание на открытой местности, при выходе из помещений используйте СИЗ;

При нахождении на открытой территории не раздевайтесь, не садитесь на землю, не курите;

Периодически поливайте территорию возле дома для уменьшения пылеобразования;

Перед входом в помещение обувь вымойте водой или оботрите мокрой тряпкой, верхнюю одежду вытряхните и почистите влажной щеткой;

Принимайте пищу только в закрытых помещениях, тщательно мойте руки с мылом перед едой и полощите рот 0,5% раствором питьевой соды;

Воду употребляйте только из индивидуальных хозяйств, особенно молоко, зелень, овощи и фрукты, употребляйте в пищу только по рекомендации органов здравоохранения;

Исключите купание в открытых водоемах до проверки степени их РЗ. В течение 7 дней ежедневно принимайте по одной таблетке йодистого калия и давайте детям до 2 лет? часть таблетки.

Размещено на Allbest.ru

Подобные документы

    Характеристика чрезвычайных ситуаций техногенного характера, их классификация. Опасная обстановка, сложившаяся в результате аварии, катастрофы или иного бедствия. Понятие территориальной чрезвычайной ситуации. Аварии с выбросом радиоактивных веществ.

    презентация , добавлен 21.12.2010

    Виды ионизирующих излучений, процесс передачи их веществу. Экспозиционная, поглощенная и эквивалентная дозы, биологический эффект. Закон ослабления интенсивности излучения, коэффициенты ослабления. Основные виды взаимодействия нейтронов с ядрами атомов.

    презентация , добавлен 15.04.2014

    Виды и классификация стихийных бедствий, аварий и катастроф. Причины возникновения аварий на объектах с содержанием радиоактивных веществ. Мероприятия по предупреждению и ликвидации аварий. Спасательные и другие неотложные работы при такого рода авариях.

    дипломная работа , добавлен 01.12.2014

    Сфера применения радиоактивных веществ и источников ионизирующих излучение. Потенциальная опасность для жизнедеятельности человека. Свойства и особенности воздействия ионизирующего излучения на человека. Специализированная система санитарного надзора.

    реферат , добавлен 07.11.2008

    Общие принципы организации тушения пожаров на объектах с наличием радиоактивных веществ. Обеспечение безопасных условий личного состава при тушении пожаров на объектах с наличием радиоактивных веществ. Дезактивация вооружения и боевой техники.

    реферат , добавлен 26.07.2010

    Виды ионизирующих излучений. Строение атома. Элементарные частицы. Составляющие частицы ядра. Число Авогадро. Поле ионизирующего излучения. Флюенс частиц от произвольных точечных источников. Токовые, потоковые величины в рассеивающей и поглощающей среде.

    презентация , добавлен 13.04.2014

    Очаг поражения и важнейшие поражающие факторы. Определение дозы излучения и уровня радиации. Допустимая продолжительность спасательных работ после аварии на атомной электростанции. Определение зоны химического заражения и разрушений ударной волной.

    контрольная работа , добавлен 15.01.2009

    Сернистый ангидрид, его физические, химические, токсические свойства. Оценка химической обстановки при разрушении емкостей, содержащих СДЯВ. Расчет глубины зоны заражения при аварии на химически опасном объекте. Способы локализации источника заражения.

    курсовая работа , добавлен 19.12.2011

    Определение эквивалентности количества АХОВ, перешедшего в первичное и вторичное облако. Расчет глубины и определение предельного значения зоны заражения аммиаком пораженного города. Время подхода облака зараженного воздуха к населенному пункту.

    контрольная работа , добавлен 23.12.2010

    Сильнодействующие ядовитые вещества: определение, поражающие факторы, воздействие на человека. Физические, химические, токсические свойства и способы защиты. Профилактика возможных аварий на химически опасных объектах и снижение ущерба от них.

Радиационно-опасный объект (РОО) – это объект, на котом хранят, перерабатывают, используют или транспортируют радиоактивные вещества и при аварии, на котором может произойти облучение ионизирующим излучением или радиоактивное заражение людей, сельскохозяйственных животных и растений, а также загрязнение окружающей природной среды.
К радиационно-опасным объектам относятся атомные электростанции и реакторы, предприятия радиохимической промышленности, объекты по переработке и захоронению радиоактивных отходов и т.д.
В 2 странах мира на АЭС насчитывается 430 энергоблоков. Они вырабатывают электроэнергии: во Франции – 75%, в Швеции – 51%, в Японии – 40%, в США – 24%, в России – 12%. У нас работает 9 АЭС, имеющих 29 блоков.
При авариях или катастрофах на объектах атомной энергетики образуется очаг радиоактивного заражения (территория, на которой произошло радиоактивное заражение окружающей среды, повлекшее поражение людей, животных, растительного мира на длительное время).
Очаг поражения делится на зоны (табл.1).

Опасность, возникающая во время аварий на РОО, связана с выходом радиоактивных веществ в окружающую среду.
Радиоактивное загрязнение (заражение) местности происходит в двух случаях: при взрывах ядерных боеприпасов или при аварии на объектах ядерной энергетики.

При ядерном взрыве преобладают радионуклиды с коротким периодом полураспада, поэтому происходит быстрый спад уровней радиации. Особенностью аварий на АЭС является: во-первых, радиоактивное заражение атмосферы и местности легколетучими радионуклидами (йод, цезий, стронций), а во-вторых, цезий и стронций обладают длительным периодом полураспада. Поэтому резкого спада уровней радиации нет. При ядерном взрыве главную опасность представляет внешнее облучение (90-95% от общей дозы). При авариях на АЭС значительная часть продуктов деления ядерного топлива находится в парообразном и аэрозольном состоянии. Доза внешнего облучения составляет 15%, а внутреннего – 85%.

При определении допустимых доз облучения учитывают, что оно может быть одно- или многократным. Однократным считают облучение, полученное за первые четверо суток. Последствия однократного радиационного облучения приведены в таблице 2. Облучение может быть импульсивным (при воздействии проникающей радиации) или равномерным (при облучении на радиоактивно-загрязненной местности). Облучение, полученное за время, превышающее четверо суток, считают многократным.

Действие электромагнитного излучения на организм человека, в основном, определяется поглощенной в нем энергией. Известно, что излучение, попадающее на тело человека, частично отражается и частично поглощается в нем. Поглощенная часть энергии электромагнитного поля превращается в тепловую энергию. Эта часть излучения проходит через кожу и распространяется в организме человека в зависимости от электрических свойств тканей (абсолютной диэлектрической проницаемости, абсолютной магнитной проницаемости, удельной проводимости) и частоты колебаний электромагнитного поля.

Существенные различия электрических свойств кожи, подкожного жирового слоя, мышечной и других тканей обуславливают сложную картину распределения энергии излучения в организме человека. Точный расчет распределения тепловой энергии, выделяемой в организме человека при облучении практически невозможен. Тем не менее, можно делать следующий вывод: волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового – кожей и подкожной клетчаткой, дециметрового – внутренними органами.

Кроме теплового действия электромагнитные излучения вызывают поляризацию молекул тканей человека, перемещение ионов, резонанс макромолекул и биологических структур, нервные реакции и другие эффекты.

Из сказанного следует, что при облучении человека электромагнитными волнами в тканях его организма происходят сложнейшие физико-биологические процессы, которые могут явиться причиной нарушения нормального функционирования, как отдельных органов, так и организма в целом.

Люди, находящиеся под чрезмерным электромагнитным излучением, обычно быстро утомляются, жалуются на головные боли, общую слабость, боли в области сердца. У них увеличивается потливость, повышается раздражительность, становится тревожным сон. У отдельных лиц при длительном облучении появляются судороги, наблюдается снижение памяти, отмечаются трофические явления (выпадение волос, ломкость ногтей и т.д.).

Если облучение людей превышает указанные предельно допустимые уровни, то необходимо применять защитные средства.
Защита человека от опасного воздействия электромагнитного излучения осуществляется рядом способов, основными их которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.

Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства защиты.

Химически опасный объект – объект, на котором хранят, перерабатывают, используют или транспортируют опасные химические вещества, при аварии на котором или при разрушении которого может произойти гибель или химическое заражение людей, сельскохозяйственных животных и растений, а также химическое заражение окружающей природной среды.

Крупнейшими потребителями аварийно химически опасных веществ (АХОВ) являются: черная и цветная металлургия; целлюлозно-бумажная промышленность; машиностроительная и оборонная промышленности; коммунальное хозяйство; медицинская промышленность; сельское хозяйство.

Тысячи тонн АХОВ ежедневно перевозят различными видами транспорта, перекачивают по трубопроводам. Все названные объекты экономики химически опасны. К сожалению, аварии на них случаются часто, а их масштабы сравнимы со стихийными бедствиями.

Химическая авария – авария на химически опасном объекте, сопровождающаяся разливом или выбросом АХОВ, способным привести к гибели или заражению людей, продовольствия, пищевого сырья и кормов, сельскохозяйственных животных и растений или окружающей природной среды.

Вредные вещества могут проникать в организм человека через органы дыхания, желудочно-кишечный тракт, а также кожные покровы и слизистые оболочки.

По степени воздействия на организм человека все вредные вещества подразделяются на четыре класса:

  • вещества чрезвычайно опасные (ртуть, свинец, озон, фосген);
  • вещества высокоопасные (оксиды азота, бензол, йод, марганец, медь, сероводород, едкие щелочи, хлор);
  • вещества умеренно опасные (ацетон, ксилол, сернистый ангидрид, метиловый спирт);
  • вещества малоопасные (аммиак, бензин, скипидар, этиловый спирт, оксид углерода).
  • Следует иметь в виду, что и малоопасные вещества при длительном воздействии могут при больших концентрациях вызвать тяжелые отравления.

Набольшую опасность по наличию и количеству АХОВ а, следовательно, по возможности заражения ими атмосферы и местности представляют районы страны, краткая характеристика которых приведена в таблице 3.

В результате аварий возможны заражение окружающей среды и массовые поражения людей, животных и растений. В связи с этим для защиты персонала и населения при авариях рекомендуется:

  • использовать индивидуальные средства защиты и убежища с режимом полной изоляции;
  • эвакуировать людей из зоны заражения, возникшей при аварии;
  • применять антидоты и средства обработки кожных покровов;
  • соблюдать режимы поведения (защиты) на зараженной территории;
  • проводить санитарную обработку людей, дегазацию одежды, территории сооружений, транспорта, техники и имущества.
  • Биологически опасные объекты – это предприятия фармацевтической, медицинской и микробиологической промышленности с наличием так называемого биологического фактора, основными компонентами которого являются микроорганизмы, продукты метаболической деятельности микроорганизмов и микробиологического синтеза.
  • Значительную опасность для населения представляют биологические аварии, сопровождающиеся выбросом (вывозом, выпуском) в окружающую среду препаратов с патогенными биологическими агентами (бактерии, вирусы, риккетсии, грибы, токсины и яды).

Биологическая авария – это авария, сопровождающаяся распространением опасных биологических веществ в количествах, создающих угрозу жизни и здоровью людей, животных и растений, наносящих ущерб окружающей природной среде.
Характерным для биологических аварий является: длительное время развития, наличие скрытого периода в проявлении поражений, стойкий характер и отсутствие четких границ возникших очагов поражения, трудность обнаружении и идентификации возбудителя (токсина). Для ликвидации последствий биологических аварий необходимо принятие экстренных мер с привлечением учреждений и формирований госсанэпидслужбы Минздрава России, МЧС России, Минобороны России, МВД России и других ведомств, а также создаваемых на их базе специализированных формирований, являющихся составной частью Всероссийской службы медицины катастроф.

Общее руководство, организацию и контроль за проведением мероприятий по локализации и ликвидации очага биологического заражения осуществляют санитарно-противоэпидемические комиссии при органах исполнительной власти субъектов Российской Федерации.

В целях выявления и оценки санитарно-эпидемиологической и биологической обстановки в зоне биологической аварии организуется санитарно-эпидемиологическая и биологическая разведка. Санитарно-эпидемиологическая разведка проводится в целях выявления условий, влияющих на санитарно-эпидемиологическое состояние населения, и установления путей возможного заражения населения и распространения инфекционных заболеваний.

Биологическая разведка проводится в целях своевременного обнаружения факта выброса (утечки) биологического агента, в т.ч. индикации и определения вида возбудителя. Биологическая разведка подразделяется на общую и специальную. Общая биологическая разведка ведется силами постов радиационного и химического наблюдения, Всероссийского центра мониторинга и прогнозирования чрезвычайных ситуаций, разведывательными дозорами, частями и органами управления ГОЧС путем наблюдения и неспецифической индикации биологических средств.

В целях локализации и ликвидации очага биологического заражения осуществляется комплекс режимных, изоляционно-ограничительных и медицинских мероприятий, которые могут выполняться в рамках режима карантина и обсервации.
Под карантином следует понимать систему государственных мероприятий, включающих режимные, административно-хозяйственные, противоэпидемические, санитарные и лечебно-профилактические меры, направленные на локализацию и ликвидацию очага биологического поражения.

Обсервация это комплекс изоляционно-ограничительных, противоэпидемических и лечебно-профилактических мероприятий, направленных на локализацию очага биологического заражения и ликвидации в нем инфекционных заболеваний. Основной задачей обсервации является своевременное обнаружение инфекционных заболеваний с целью принятия мер по их локализации.

1 Введение.

Экологическая катастрофа... Данное словосочетание страшное даже (или особенно) для обывательского сознания. И всеже специалисты оказываются или наиболее чувствительными, или наиболее толстокожими, оперирующими цифрами о катастрофах и катаклизмах с таким спокойствием в языковых средствах, что начинаешь и их подозревать в антиэкологическом сознании. Известно, что экологические проблемы возникают из-за антиэкологического характера общества,а в конечном счете - всего человечества. Вспомним Ф.Ницше: “Безумие единиц - исключение, а безумие групп, партий, народов, времен - правила”.И я очень слабо верю в излечение времен и народов именно в этом плане экологического сознания. Как еще слабее - в совесть и моральные тормоза. Остается одно - закон. И здесь я, возможно,выскажу крамольную мысль: нужен закон, провозглашающий природу,окружающую среду, высшим по отношению к человеку субъектом права. Только при такой постановке вопроса можно говорить о спасении человечества, спасая природу. Только при таком подходе к решению экологических проблем можно надеяться, что безумие времен и народов станет исключением.

2 Радиационная опасность.

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами: радио- активные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении, или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма- такой способ облучения называют внутренним. Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут. Уровень радиации в некоторых местах земного шара, там, где залегают особенно радиоактивные породы, оказывается значительно выше среднего, а в других местах - соответственно ниже. Доза облучения зависит также от образа жизни людей. Земные источники радиации в сумме ответственны за большую часть облучения, которому подвер- гается человек за счет естественной радиации. В среднем они обеспечивают более 5/6 годовой эффективно эквивалентной дозы, получаемой населением, в основном вследствие внутреннего облучения. Остальную часть вносят космические лучи, главным образом путем внешнего облучения. С начала прошлого века человек ”покорил атом” и к естественным источникам радиации добавились источники созданные самими людьми. Опасность получения радиоактивного облучения сильно возросла. Проблема радиационной обстановки очень актуальна на сегодняшний день: Много АЭС: Белоярская, Ленинградская, Балаковская, Минская, Брестская, Обнинская и т.д. Ряд небольших аварий, большинство из которых очень тчательно скрывались (например, об аварии на Чернобыльской АЭС было упомянуто в газете “Правда” уже после избрания Генеральным секретарём ЦК КПСС Ю.В. Андропова). Сентябрь 1957 года. Авария на реакторе близ Челябинска. Радиацией была заражена обширная территория. Население эвакуировали, а весь скот уничтожили. 7 января 1974 года. Взрыв на первом блоке Ленинградской АЭС. Жертв не было. 1977 год. Расплавление половины топливных сборок активной зоны на втором блоке Белоярской АЭС. Ремонт с переоблучением персонала длился около года. Октябрь 1982 года. Взрыв генера- тора на первом блоке Армянской АЭС. Машинный зал сгорел. 27 июня 1985 года. Авария на первом блоке Балаковской АЭС. Погибли 14 человек. Авария произошла из-зa ошибочных действий мaлоопытного оперативного персонала. Много атомных кораблей и подводных лодок. Проблема с выбросами радиоактивных отходов. Очень много вредных радиоактивных веществ выбрасываются в моря, реки и т.д. После аварий на АЭС иногда даже нет специальных контейнеров, в которых можно хранить радиоактивные вещества (в Чернобыле такие контейнеры строили уже после аварии, подвергая тем самым персонал пере- облучению). Крупные аварии: Чернобыльская АЭС, Уральская АЭС. Естественно, что эти аварии в большей мере подрывают веру многих людей в безопасность использования АЭС. Очень большой процент погибших и навсегда искалеченных людей. Но не одни АЭС являются источниками повышенной радиоактивной опасности. О них и пойдет далее речь.

3 Радиационно опасные объекты.

За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для изготовления светящихся циферблатов часов и поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом. Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных. Как правило, для техногенных источников радиации упомянутая вариабельность выражена гораздо сильнее, чем для естественных. Кроме того, порождаемое ими излучение обычно легче контролировать, хотя облучение, связанное с радиоактивным и осадками от ядерных взрывов, почти так же невозможно контролировать, как и облучение, обусловленное космическими лучами или земными источниками. Радиационно опасные объекты- предприятия, при аварии на которых или при разрушении которых могут произойти массовые радиационные поражения людей, животных, растений и радиоактивное заражение окружающей природной среды. К ним относятся:

    Предприятия ядерного топливного цикла - урановая промышленность, радиохимическая промышленность, ядерные реакторы разных типов, предприятия по переработке ядерного топлива и захоронения радиоактивных отходов;

    Научно – исследовательские и проектные институты, имеющие ядерные установки;

    Транспортные ядерные энергетические установки;

    Военные объекты;

Во избежание аварий на радиационно опасных объектах необходимо соблюдать технику безопасности. Режимы радиационной защиты - это порядок действия людей, применения средств и способов защиты в зонах радиоактивного заражения, предусматривающий максимальное уменьшение возможных доз облучения. Для обеспечения радиационной безопасности при нормальной эксплуатации объектов необходимо руководствоваться следующими положениями:

1. Непревышение допустимых пределов индивидуальных доз облучения человека от всех источников ионизирующего излучения (принцип нормирования).

2. Запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному фону облучения (принцип обоснования).

3. Поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения (принцип оптимизации).

3.1 Ядерное оружие.

Ядерные взрывы. За последние 40 лет каждый из нас подвергался облучению от радиоактивных осадков, которые образовались в результате ядерных взрывов. Как известно после взрыва атомной бомбы в атмосферу попадает огромное колличество радиации, которая в последствии выпадает на различных территориях в виде осадков. Но речь идет не о тех радиоактивных осадках, которые выпали после бомбардировки Хиросимы и Нагасаки в 1945 году, а об осадках, связанных с испытанием ядерного оружия в атмосфере. Максимум этих испытаний приходится на два периода: первый на 1954 1958 годы, когда взрывы проводили Великобритания, США и СССР, и второй, более значительный, на 1961 1962 годы, когда их проводили в основном Соединенные Штаты и Советский Союз. Во время первого периода большую часть испытаний провели США, во время второго СССР. Эти страны в 1963 году подписали договор об ограничении испытаний ядерного оружия, обязывающий не испытывать его в атмосфере, под водой и в космосе. С тех пор лишь Франция и Китай провели серию ядерных взрывов в атмосфере, причем мощность взрывов была существенно меньше, а сами испытания проводились реже (последнее из них в 1980 году). Подземные испытания проводятся до сих пор, но они обычно не сопровождаются образованием радиоактивных осадков. Часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в тропосфере (самом нижнем слое атмосферы), подхватывается ветром и перемещается на большие расстояния, оставаясь примерно на одной и той же широте. Находясь в воздухе в среднем около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако большая часть радиоактивного материала выбрасывается в стратосферу (следующий слой атмосферы, лежащий на высоте 10- 50 км), где он остается многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара. Радиоактивные осадки содержат несколько сотен различных радионуклидов, однако большинство из них имеет ничтожную концентрацию или быстро распадается; основной вклад в облучение человека дает лишь небольшое число радионуклидов. Вклад в ожидаемую коллективно эффективную эквивалентную дозу облучения населения от ядерных взрывов, превышающий 1%, дают только четыре радионуклида. Это углерод-14, цезий-137, цирконий-95 и стронций-90. Дозы облучения за счет этих и других радионуклидов различаются в разные периоды времени после взрыва, поскольку они распадаются с различной скоростью. Так, цирконий-95, период полураспада которого составляет 64 суток, уже не является источником облучения. Цезий-137 и стронций-90 имеют периоды полураспада 30 лет, поэтому они давали вклад в облучение приблизительно до конца 20 века. И только углерод-14, у которого период полураспада равен 5730 годам, будет оставаться источником радиоактивного излучения (хотя и с низкой мощностью дозы) даже в отдаленном будущем: к 2000 году он потеряет лишь 7% своей активности. Годовые дозы облучения четко коррелируют с испытаниями ядерного оружия в атмосфере: их максимум приходится на те же периоды. В 196З году коллективная среднегодовая доза, связанная с ядерными испытаниями, составила около 7% дозы облучения от естественных источников; в 1966 году она уменьшилась до 2%, а в начале 80-х до 1%. Если испытания в атмосфере больше проводиться не будут, то годовые дозы облучения будут становиться все меньше и меньше. Все приведенные цифры, конечно, являются средними. На Северное полушарие, где проводилось большинство испытаний, выпала и большая часть радиоактивных осадков. Пастухи на Крайнем Севере получают дозы облучения от цезия-137, в 100 1000 раз превышающие среднюю индивидуальнуюдозу для остальной части населения (впрочем, они получают большие дозы и от естественных источников цезий накапливается в ягеле и по цепи питания попадает в организм человека). К несчастью, те люди, которые находились недалеко от испытательных полигонов, получили в результате значительные дозы; речь идет о части населения Маршалловых островов и команде японского рыболовного судна, случайно проходившего неподалеку от места взрыва. Суммарная ожидаемая коллективно эффективная эквивалентная доза от всех ядерных взрывов в атмосфере, произведенных к настоящему времени, составляет 30000000 чел-Зв. К 1980 году человечество получило лишь 12% этой дозы, остальную часть оно будет получать еще миллионы лет. Возьмем для примера широко известный всем Семипалатинский полигон на котором в СССР проводились испытания ядерного оружия к северо-востоку от Семипалатинского полигона находится Алтайский край. Географическое положение Алтайского края и региональные проявления законо­мерностей глобальной циркуляции атмосферы обусловили близкую к 50% вероятность прохождения радиоактивных продуктов от атмос­ферных ядерных взрывов на Семипалатинском полигоне над террито­рией Алтайского края. Это привело к созданию в мышлении жителей Алтайского края критического и, возможно, не обоснованного отрицательного отношения к использованию атомной энергии в каких бы то ни было целях. В то же время исследования влияния ядерных испытаний на Семипалатинском полигоне на здоровье населения Алтайского края только начаты. Изучается общее состояние здоровья, функциониро­вание отдельных систем организма, выявление генетических изме­нений. Целью данной работы было исследование влияния ядерных взрывов на Семипалатинском полигоне на функциональную актив­ность печени у женщин, проживавших в районах подвергавшихся воздействию радиоактивных продуктов ядерных взрывов, как органа занимающего “центральное место” в процессах обмена веществ. В соответствии с целью работы решались следующие задачи:

1) оценка белоксинтезирующей функции печени;

2) исследование обезвреживающей способности печени;

3) изучение депонирующей функции печени;

На данный момент исследования еще не завершены, но у местных жителей были обнаружены учащения случаев заболевания раком и другими заболеваниями. Все сказанное выше доказывает, что ядерное оружие является чуть ли не наиболее опасным радиационно опасным обьектом. При аварии последствия ядерного взрыва будут развиваться по принципу описанному выше, кроме того, в случае нахождения атомной бомбы (например склада по хранению оружия) в населенном пункте, количество жертв будет в тысячи, десятки тысяч раз больше. Основным источником радиоактивного заражения при ядерных взрывах являются осколки деления ядерного горючего, в качестве которого используются уран-233, уран-235 и плутоний-239.Кроме того, в комбинированных боеприпасах используется уран-238. Другим источником радиоактивного заражения является та часть горючего, которая не участвовала в ядерной реакции. Так как доля ядерного горючего, принимающего участие в реакции деления, сравнительно мала и, по некоторым данным, не превышает 20%, оставшаяся часть ядерного горючего, будучи раздроблена силой взрыва на мельчайшие частицы, также явится источником радиоактивных частиц. Третьим источником радиоактивного заражения является наведенная активность, возникающая в результате воздействия потока нейтронов, образующихся в момент взрыва, на некоторые химические элементы, входящие в состав грунта и в оболочку ядерного боеприпаса.

3.2 Атомный флот.

На первом месте по колличеству в российском флоте и во флоте зарубежных стран стоят атомные подводные лодки (АПЛ). Поскольку АПЛ приходится плавать на больших глуби-нах, а, следовательно, при большом внешнем давлении, то принимаются особые меры по защите реактора. При повреждении реакторного отсека может возникнуть течь, произоидет облучение воды и, подхваченная течением, она может достичь побережья любого конти- нента. Следом возникнет заражение близ лежащих территорий и обитателей вод данной местности. Но не только плавающие атомоходы представляют опасность для окружающей среды и обитателей планеты. И затонувшие на большой глубине и списанные, они ставят перед человечеством очень сложную проблему захоронения смертельно опасных радио- активных отходов. Из-за несоверенства технологий и низкого качества материалов при высокой температуре и давлении постоянно происходят течи радиоактивного контура и другие аварии, связанные с облучением людей. В итоге после нескольких лет эксплуатации радиационная обстановка на некоторых лодках не позволяет проводить ремонтные работы в реакторном отсеке из-за опасности для жизни личного состава. После чего реактор вырезают, вынимают тепловыделяющий канал, затем заполняют его твердеющей смесью и затапли- вают. Но вынуть тепловыделяющий канал удается не всегда и реактор топят с радио- активными элентами. По заявлению МАГАТЭ глубина затопления подводных лодок и атомных реактаров составляет 4000 м, но возникают ситуации, при которых лодки затапли- вают на меньших глубинах. Так, например, была затоплена лодка К-27 в Карском море с координатами 72 31’ с.ш. и 55 30’ в.д. Ясно, что такие ”хранилища” представляют наибольшую опасность.

За время холодной войны СССР и США накопили огромное количество подводных лодок различного назначения и, в настоящее время, стоит проблема утилизации этих подводных лодок и захоронения радиоактивных отходов и ядерных реакторов с них. В России разработан проект государственной программы по обращению с радиоактивными отходами до 2005г. Однако практическое осуществление программы сталкивается с cерьезными трудностями. Не созданы хранилища для реакторных отсеков, в которых они могли бы содержаться тысячелетиями вплоть до естественного распада плутония-239, или до эксплуатации топлива в реакторах на быстрых нейтронах. Соединенные Штаты для хранения радиоактивных отходов всей Америки выбрали гору Юкка-Маунти в штате Невада. Только экспертиза на предмет возможности встроить в эту гору хранилище для радиоактивных отходов обошлась в миллиард долларов, строительство потребует 8 миллиардов. Хранилище представляет собой штольню длинной в 170км. Экспертизе потребовалось ответить на такие вопросы: Возможно ли поступление воды в штольню? Возможны ли в этом районе в ближайшие 10 тыс. лет вулканические явления или землетрясения, способные разрушить хранилище и “высвободить” продукты радиоактивного распада? Существуют и проекты “саркофагов” для реакторных отсеков. Они имеют достаточные научные обоснования. Известно, что вырезанный в 1959г. и затопленный реакторный отсек с подводной лодки “Си Вулф” за 20 лет снизил радиоактивость за счет естественного распада на 90%. Мы же пока копим радиоактивные отходы

3.3 АЭС.

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, и являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. К концу 1984 года в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 13% суммарной мощности всех источников электроэнергии и была равна 220 ГВт. До сих пор каждые 5 лет эта мощность удваивалась, однако, сохранится ли такой темп роста в будущем, неясно, Оценки предполагаемой суммарной мощности атомных электростанций на конец века имеют постоянную тенденцию к снижению. Причины тому экономический спад, реализация мер по экономии электроэнергии, а также противодействие со стороны общественности. Согласно последней оценке МАГАТЭ (1983 г.), в 2000 году мощность атомных электростанций будет составлять 720-950 ГВт. Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. На каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества. НКДАР оценил дозы, которые получает население на различных стадиях цикла за короткие промежутки времени и за многие сотни лет. Заметим, что проведение таких оценок очень сложное и трудоемкое дело. Начнем с того, что утечка радиоактивного материала даже у однотипных установок одинаковой конструкции очень сильно варьирует. Например, у корпусных кипящих реакторов с водой в качестве теплоносителя и замедлителя (Boiling Water Reactor, BWR) уровень утечки радиоактивных газов для двух разных установок (или для одной и той же установки, но в разные годы) может различаться в миллионы раз. Доза облучения от ядерного реактора зависит от вpемени и pасстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Несмотря на это, наряду с АЭС, расположенными в отдаленных районах, имеются и такие, которые находятся недалеко от крупных населенных пунктов. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут достаточно долго и могут распространяться по всему земному шару, а определенная часть изотопов остается в окружающей среде практически бесконечно. При этом различные радионуклиды также ведут себя по-разному: одни распространяются в окружающей среде быстро, другие чрезвычайно медленно. Чтобы разобраться в этой ситуации, НКДАР разработал для каждого этапа ядерного топливного цикла параметры гипотетической модельной установки, имеющей типичные конструктивные элементы и расположенной в типичном географическом районе с типичной плотностью населения. НКДАР изучил также данные об утечках на всех ядерных установках в мире и определил среднюю величину утечек, приходящуюся на гигаватт-год вырабатываемой электроэнергии. Такой подход дает общее представление об уровне загрязнения окружающей среды при реализации программы по атомной энергетике. Однако полученные оценки, конечно же, нельзя безоговорочно применять к какой-либо конкретной установке. Ими следует пользоваться крайне осторожно, поскольку они зависят от многих специально оговоренных в докладе НКДАР допущений. Существует пять основных типов энергетических реакторов: водо-водяные реакторы с водой под давлением (Pressurised Water Reactor, PWR), водо-водяные кипящие реакторы (Boiling Water Reactor, BWR), разработанные в США и наиболее распространенные в настоящее время; реакторы с газовым охлаждением, разработанные и применяющиеся в Великобритании и Франции; реакторы с тяжелой водой, широко распространенные в Канаде; водо-графитовые канальные реакторы, которые эксплуатируются только в СССР. Кроме реакторов этих пяти типов в Европе и СССР имеются также четыре реактора-размножителя на быстрых нейтронах, которые представляют собой ядерные реакторы следующего поколения. Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов. В последнее время наблюдается тенденция к уменьшению количества выбросов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствованиями, частично с введением более строгих мер по радиационной защите. В мировом масштабе примерно 10% использованного на АЭС ядерного топлива направляется на переработку для извлечения урана и плутония с целью повторного их использования. Сейчас имеются лишь три завода, где занимаются такой переработкой в промышленном масштабе: в Маркуле и Ла-Are (Франция) и в Уиндскейле (Великобритания). Самым “чистым» является завод в Маркуле, на котором осуществляется особенно строгий контроль, поскольку его стоки попадают в реку Рону. Отходы двух других заводов попадают в море, причем завод в Уиндскейле является гораздо большим источником загрязнения, хотя основная часть радиоактивных материалов попадает в окружающую среду не при переработке, а в результате коррозии емкостей, в которых ядерное топливо хранится до переработки. За период с 1975 по 1979 год на каждый гигаватт -год выработанной энергии уровеньзагрязнений от завода в Уиндскейле по  - активности примерно в 3,5 раза, а по  -активности в 75 раз превышал уровень загрязнений от завода в Ла-Are. С тех пор ситуация на заводе в Уиндскейле значительно улучшилась, однако в пересчете на единицу переработанного ядерного горючего это предприятие по-прежнему остается более “грязным “, чем завод в Ла-Are. Можно надеяться, что в будущем утечки на перерабатывающих предприятиях будут ниже, чем сейчас. Существуют проекты установок с очень низким уровнем утечки в воду, и НКДАР взял в качестве модельной установку, строительство которой планируется в Уиндскейле. Взрыв или повреждение ядерного реактора несет с собой огромную экологическую катастрофу. Не смотря на то, что при взрыве не высвобождается огромного колличества энергии, как при атомном взрыве последствия в результате заражения будут не меньшими. Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека). При одноразовом выбросе радиоактивных веществ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоак- тивного облака имеет вид эллипса. Радиационные характеристики зон радиоактивного загрязнения местности при авариях на АЭС см. в Приложении 1 таблица 1.

Показатели размеров зон заражения см. в Приложении 1 таблица 2.

Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения радиоактивных веществ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности. На средней фазе источником внешнего облучения являются радиационные вещества, выпавшие из облака и находящиеся на почве, зданиях и т.п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой. Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии. Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений деятельности населения на загрязненной территории. В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе. Есть мнение, что «шум», поднятый вокруг аварии на ЧАЭС жур­налистами и политиками, как фактор стресса и отрицательных эмо­ций нанес здоровью людей больший ущерб, чем радиационный выб­рос. Но, возможно, что АЭС не так опасны, как мы предполагаем. Ивестно что, с начала использования этих электростанций произошло много аварий и катастроф. Самая страшная катастрофа на АЭС произошла в 1986 в Чернобыле. В октябре 1989 года правительство СССР официально обрати­лось к МАГАТЭ с просьбой провести международную экспертизу раз­работанной в СССР концепции безопасного проживания населения на территориях, подвергшихся радиоактивному загрязнению и дать оценку эффективности мероприятий по охране здоровья населения, проводимых в этих районах. В результате был создан Международ­ный Чернобыльский Проект (МЧП), в котором приняли участие более двухсот ученых-экспертов из различных международных организаций и разных стран мира. МЧП отметил значительное, не обусловленное радиацией, на­рушение здоровья у жителей как обследованных загрязненных, так и обследованных контрольных населенных пунктов, которые изуча­лись в рамках Проекта, но не было выявлено каких-либо нарушений здоровья, непосредственно связанных с воздействием радиации. Авария повлекла за собой значительные отрицательные психологи­ческие последствия, выраженные в повышенном чувстве тревоги и возникновении стресса из-за постоянного ощущения весьма сильной неопределенности, что наблюдалось и за пределами загрязненных районов. На основании оцененных в рамках Проекта доз и принятых в настоящее время оценок радиационного риска можно сказать, что будущее увеличение числа раковых заболеваний или наследственных изменений по сравнению с естественным уровнем будет трудно оп­ределить даже при широкомасштабных и хорошо организованных дол­госрочных эпидемиологических исследованиях. Сообщения о вредных для здоровья последствиях, объясняемых воздействием радиации, не подтвердились ни надлежащим образом проведенными местными исследованиями, ни исследованиями в рам­ках Проекта. По сравнению с контрольными районами не было обна­ружено достоверных отличий числа и видов психологических нару­шений, общего состояния здоровья, нарушений сердечно-сосудистой системы, функционирования щитовидной железы, гематологических показателей, случаев раковых заболеваний, катаракт, мутаций хромосом и соматических клеток, аномалий плода и генетических изменени.

3.4 Производство радиоактивного топлива

и захоронение радиоактивных отходов.

До сих пор мы совсем не касались проблем, связанных с первой и последней стадией ядерного топливного цикла: производством радиоактивного топлива и захоронением высокоактивных отходов от АЭС и других предприятий. Проблема захоронения является наиболее острой. Во-первых: потому, что в результате деятельности АЭС и других предприятий постоянно появляются радиоактивные вещества непригодные к дальнейшему использованию. Во-вторых: каждое предприятие вырабатывает свои отходы (см. Приложение 2). Эти проблемы находятся в ведении правительств соответствующих стран. В некоторых странах ведутся исследования по отверждению отходов с целью последующего их захоронения в геологически стабильных районах на суше, на дне океана или в расположенных под ними пластах. Предполагается, что захороненные таким образом радиоактивные отходы не будут источником облучения населения в обозримом будущем. НКДАР не оценивал ожидаемых доз облучения от таких отходов, однако в материалах по программе за 1979 год сделана попытка предсказать судьбу радиоактивных материалов, захороненных под землей. Оценки показали, что заметное количество радиоактивных веществ достигнет биосферы лишь спустя 10 - 20 лет. По данным НКДАР, весь ядерный топливный цикл дает ожидаемую коллективно эффективную эквивалентную дозу облучения за счет короткоживущих изотопов около 5,5 чел-Зв на каждый гигаватт-год вырабатываемой на АЭС электроэнергии. Из них процесс добычи руды дает вклад 0,5 чел-Зв, ее обогащение 0,04 чел-Зв, производство ядерного топлива 0,002 чел-Зв, эксплуатация ядерных реакторов около 4 чел-Зв (наибольший вклад) и, наконец, процессы, связанные с регенерацией топлива 0,95 чел-Зв. Как уже отмечалось, данные по регенерации получены из оценок ожидаемых утечек на заводах, которые предполагается построить будущем. На самом же деле для современных установок эти цифры в 10 - 20 раз выше, но эти установки перерабатывают лишь 10% отработанного ядерного топлива, таким образом, приведенная выше оценка остается справедливой. 90% всей дозы облучения, обусловленной короткоживущими изотопами, население получает в течение года после выброса, 98% в течение 5 лет. Почти вся доза приходится на людей, живущих не далее нескольких тысяч километров от АЭС. Ядерный топливный цикл сопровождается также образованием большого количества долгоживущих радионуклидов, которые распространяются по всему земному шару. НКДАР оценивает коллективно эффективную ожидаемую эквивалентную дозу облучения такими изотопами в 670 чел-Зв на каждый гигаватт-год вырабатываемой электроэнергии, из которых на первые 500 лет после выброса приходится менее 3%. Таким образом, от долгоживущих радионуклидов все население Земли получает примерно такую же среднегодовую дозу облучения, как и население, живущее вблизи АЭС, от короткоживущих радионуклидов, при этом долгоживущие изотопы оказывают свое воздействие в течение гораздо более длительного времени. 90% всей дозы население получит за время от тысячи до сотен миллионов лет после выброса. Следовательно, люди, живущие вблизи АЭС, даже при нормальной работе реактора получают всю дозу сполна от короткоживущих изотопов и малую часть дозы от долгоживущих. Эти цифры не учитывают вклад в облучение от радиоактивных отходов, образующихся в результате переработки и от отработанного топлива. Есть основания полагать, что в ближайшие несколько тысяч лет вклад радиоактивных захоронений в общую дозу облучения будет оставаться пренебрежимо малым 0,1 - 1% от ожидаемой коллективной дозы для всего населения. Однако радиоактивные отвалы обогатительных фабрик, если их не изолировать соответствующим образом, без сомнения, создадут серьезные проблемы. Примерно половина всей урановой руды добывается открытым способом, а половина шахтным. Добытую руду везут на обогатительную фабрику, обычно расположенную неподалеку. И рудники, и обогатительные фабрики служат источником загрязнения окружающей среды радиоактивными веществами. Если рассматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе переработки руды образуется огромное количество отходов (хвостов). Вблизи действующих обогатительных фабрик (в основном в Северной Америке) уже скопилось 120 млн. т. отходов, и если положение не изменится, к концу века эта величина возрастет до 500 млн. т. Эти отходы будут оставаться радиоактивными в течение миллионов лет, когда фабрика давно перестанет существовать. Таким образом, отходы являются главным долгоживущим источником об лучения населения, связанным с атомной энергетикой. Однако их вклад в облучени можно значительно уменьшить, если отвалы заасфальтировать или покрыть и поливинилхлоридом. Конечно, покрытие необходимо будет регулярно менять. Урановый концентрат, поступающий обогатительной фабрике, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях ядерного топливного цикла. Теперь ядерное топливо готово к использованию в ядерном реакторе. Если учесть эти два дополнительных источника облучения, связанные с производством радиоактивного топлива, то для населения Земли ожидаемая коллективно эффективная эквивалентная доза облучения за счет долгоживущих радионуклидов составит около 4000 чел-Зв на каждый гигаватт-год вырабатываемой энергии. Все подобные оценки, однако, неизбежно оказываются ориентировочными, поскольку трудно судить не только о будущей технологии переработки отходов, численности населения и местах его проживания, но и о дозе, которая будет иметь место через 10000 лет. Поэтому НКДАР советует не слишком полагаться на эти оценки при принятии каких-либо решений. Годовая коллективно эффективная доза облучения от всего ядерного цикла в 1980 году составляла около 500 чел-Зв. Ожидается, что к 2000 году она возрастет до 10000 чел-Зв, а к 2100 году до 200000 чел-Зв. Эти оценки основаны на пессимистическом предположении, что нынешний уровень выбросов сохранится, и не будут введены существенные технические усовершенствования. Но даже и в этом случае средние дозы будут малы по сравнению с дозами, получаемыми от естественных источников, в 2100 году они составят лишь 1% от естественного фона. Люди, проживающие вблизи ядерных реакторов, без сомнения, получают гораздо большие дозы, чем население в среднем. Тем не менее в настоящее время эти дозы обычно не превышают нескольких процентов естественного радиационного фона. Более того, даже доза, полученная людьми, живущими около завода в Уиндскейле, в результате выброса цезия-137 в 1979 году была, по-видимому, меньше 1/100 дозы, полученной ими от естественных источников за тот же год. Все приведенные выше цифры, конечно, получены в предположении, что ядерные реакторы работают нормально. Однако количество радиоактивных веществ, поступивших в окружающую среду при авариях, может оказаться гораздо больше. В одном из последних докладов НКДАР была сделана попытка оценить дозы, полученные в результате аварии в Тримайл-Айленде в 1979 году и в Уиндскейле в 1957 году. Оказалось, что выбросы при аварии на АЭС в Тримайл-Айленде были незначительными, однако, согласно оценкам, в результате аварии в Уиндскейле ожидаемая коллективно эффективная эквивалентная доза составила 1300 чел-Зв. Комитет, однако, считает, что нельзя прогнозировать уровень аварийных выбросов на основании анализа последствий этих двух аварий. Но вернемся теперь к нашим проблемам. За последнее время в России тоже произошли аварии на перерабатывающих заводах. 31.08.94 г. подгорание тепловыделяющей сборки ядерного реактора на ПО “Маяк”, в результате которого произошел выброс в атмосферу радионуклидов суммарной бета-активностью 230 мКи и активностью по цезию-137 около 150 мКи. Суммарная бета-активность выпадений, отобранных в ближних зонах ПО “Маяк” сразу после радиационного инцидента 1994 г. на этом предприятии, не превышала пределов обычных колебаний уровней фоновых выпадений для этих местностей. Радиоактивное загрязнение местности накопление на почве радиоизотопов, выпадающих из атмосферы, в течение 1994 г. практически не сказалось на уровнях загрязнения, сложившихся к концу предыдущего 1993 г. Географическое распределение радиоактивного загрязнения почвы на территории страны в 1994 г. также почти не изменилось. Захоронение радиоактивных отходов на дне морей и океанов практикуется с момента появления атомных реакторов на судах. Первыми это сделали США в 1946г., затем великобритания- в1949г., Япония- в 1955г. Первый морской могильник жидких радиоактивных отходов появился в СССР не позднее 1964г., официальных данных об этом естественно нет. Радиактивные отходы помещаются в специальные контейнеры, которые теоретически не разрушаются моркой водой и глубинным давлением. По выработанным МАГАТЭ рекомендациям хоронить предполагается на глубине 4000м, на достаточном удалении от континентов и островов и в районах с минимальной продуктивностью моря, то есть там, где не ведется промышленный лов рыбы и других морских животных. На западе информация о местах захоронения с указанием точных координат, глубины, массы, числа контейнеров и т.п. доступна не только специалистам, но и независимым исследователям. Рассчеты официальных экспертов достаточно оптимистичны: в течение 500 лет даже при существующих уровнях сбросов на одной площадке индивидуальные дозы облучения не должны достигнуть значительных величин. Однако в России существует и другая техника захоронения. Радиоактивные отходы складируются на списанных судах ВМФ, и когда ставить контейнеры с отходами уже некуда, суда буксируются в океан и топятся. Не соблюдаются нормы МАГАТЭ по содержимому затапливаемых контейнеров. Так, например, в заливе Амбросимова недалеко от архипелага Новая Земля, был обнаружен плавающий контейнер с уровнем излучения 160 Р/ч. Не серьезно сравнивать с рекомендациями МАГАТЭ и глубины затопления радиоактивных отходов в районе Новой Земли. Вместо положенного минимума в 4000 м, они колеблются от 18 до 270м. В 1992г. аппарат Президента России рассекретил данные о загрязнении северных и дальневосточных морей: ”В 1959-1992 гг. наша страна сбросила в северные моря жидких радиоактивных отходов суммарной активностью около 20,6 тысяч кюри и твердых – суммарная активность около 2,3миллиона кюри. В морях дальнего востока эти величины составили соответственно:12,3 и 6,2 тысячи кюри”. Видно, что затопление радиоактивных контейнеров производилось с нарушением элементарных норм, и до настоящего времени никто не контролирует их состояние. На Южном Урале в р. Теча, куда в 40-50-х гг. производились сбросы жидких радиоактивных стоков ПО “Маяк”, концентрации стронция-90 в речной воде в 100-1000 раз превышали фоновые. Уровни загрязнения морской воды стронцием-90 также не изменились по сравнению с 1993 г. В водах Каспийского, Охотского, Карского и Баренцева морей, а также в водах Тихого океана, омывающих берега Камчатки, концентрация стронция-90 колебалась в пределах (0,03-0,6)Ч10-12 Ки/л. Концентрации цезия-137, стронция-90 и плутония-239,240 в водах Баренцева и Карского морей, включая места захоронения радиоактивных отходов, сравнимы с наблюдаемыми в других морях и составляют:

цезий -137 - (8-54) Ч10-14 Ки/л;

стронций-90 - (8-32) Ч10-14 Ки/л;

плутоний-239,240 - (5-43) Ч10-17 Ки/л.

4 Заключение.

Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз. На всей территории нашей страны осуществляется государственный контроль за радиационной обстановкой. Все ядерные материалы подлежат государственному учёту и контролю на различных уровнях государственной власти. Государство регулирует так же безопасность при использовании атомной энергии при помощи специально уполномоченных на то федеральных органов исполнительной власти. Они вводят в действие нормы и правила в области использования атомной энергии, осуществляют надзор за их исполнением, проводят экспертизу ядерных установок, применяют меры административного воздействия и выполняют другие функции, связанные с обеспечением безопасности при использовании атомной энергии. На федеральном уровне государственный учёт и контроль ядерных материалов осуществляют Министерство по атомной энергии (Минатом России) и Министерство обороны РФ. На ведомственном уровне эти функции выполняют федеральные органы исполнительной власти, в непосредственном распоряжении которых находятся ядерные материалы. На уровне эксплуатирующей организации, деятельность которой связана с производством, хранением или использованием ядерных материалов, их учёт и контроль осуществляет её администрация. Надзор же за самой системой учёта и контроля ядерных материалов для использования в мирных целях осуществляет Федеральный надзор России по ядерной и радиационной безопасности. Государственный таможенный комитет РФ контролирует перемещение ядерных материалов через таможенную границу. Особо подчёркивается, что вмешательство в деятельность эксплуатирующей организации в части использования ядерной установки не допускается. При потере управления некоторыми частями ядерной установки может наступить серьёзная радиационная авария, что не просто нежелательно, а просто недопустимо. В организациях, где теоретически возможны подобные аварии, обязательно должен быть план мероприятий по защите работников и населения, а так же средства для ликвидации аварий. В качестве профилактики проводятся мероприятия по обеспечению правил, норм в области радиационной безопасности, информирование населения о радиационной обстановке, его обучение в области радиационной безопасности. Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро-, и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения и однозначно толкуемая документация. Все это принимает особую необходимость, если РОО находится недалеко от населенного пункта или внутри. В Москве имеются радиационно-опасные объекты, аварии на которых могут привести к заражению значительной части территории города и повлечь за собой человеческие жертвы (см. Приложение 3). В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО. При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий. Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий. Нельзя обойти вопросы экологических проблем существования всех компонентов РОО. Кроме непосредственно радиоактивных материалов необходимо учитывать наличие активных (в том числе ядовитых), особо чистых веществ, цветных, тяжелых и драгоценных металлов.

Все вышеперечисленное требует соответствующей учебно-материальной базы, основанной на реальных документах, максимально приближенных к реальной технике тренажерах, макетах, муляжах. Процесс обучения целесообразно проводить комплексным методом в ограниченных по количеству группах, сочетая привитие глубоких знаний и твердых практических навыков. Максимальные наглядность, доступность и научность необходимо сочетать без взаимного ущерба и без угрозы стать заложниками финансового дефицита.

ПРИЛОЖЕНИЕ 1.

таблица 1.

Радиационные характеристики зон радиоактивного загрязнения местности при авариях на АЭС.


таблица 2.

Показатели размеров зон заражения (тип реактора - РБМК-1000).

Приложение 2.

Количество радиоактивных отходов, хранящихся на предприятиях Минатома России

Источник образования

Радиоактивные отходы

Количество (м3) Активность

Место хранения

Добыча и переработка руды

1,0Ч108 1,8Ч105


Хранилища и площадки

Обогащение урана и производство тепловыделяющих элементов

1,6Ч106 4,0Ч103


Хранилища на предприятиях

Атомные электростанции

1,5Ч105 4,2Ч104

0,8Ч105 0,7Ч103

1,6Ч104 1,0Ч103


Металлические емкости

Хранилища на АЭС

Хранилища на АЭС

Радиохимический комплекс

предприятия

(переработка ОТВС

с учетом отходов,

накопившихся при

получении оружейного

плутония)

2,5Ч104 5,7Ч108

9,5Ч103 2,0Ч108

4,0Ч108 7,0Ч108

1,0Ч108 1,2Ч107

~ 6,0Ч108 ~ 1,5Ч109


Стальные емкости на ПО “Маяк”

Хранилища на ПО “Маяк”

Емкости, водоемы, бассейны

Бетонированные хранилища на предприятиях

Примечание: НАО - низкоактивные радиоактивные отходы

САО - среднеактивные радиоактивные отходы

ВАО - высокоактивные радиоактивные отходы

Количество радиоактивных отходов,хранящихся на предприятиях различных ведомств

Источник образования

Радиоактивные

Количество

Активность

Место хранения

Военно-морской флот

Береговые и

плавучие базы

Бетонные хранилища

Судостроительная промышленность

Береговые и

плавучие базы

Хранилища на

предприятиях

Гражданский морской флот

Береговые

хранилища

Береговые

хранилища

Береговые

Хранилища

Пункты захоронения РАО от предприятий неядерного топливного цикла (16 пунктов)

Хранилища спецкомбинатов

“РАДОН”



Количество отработавшего ядерного топлива, хранящегося на предприятиях

Минатома, Минтранса и ВМФ России

Ведомство, Радиоактивные отходы

вид топлива Количество (т) Активность (Ки) Место хранения

Приложение 3.

Перечень Московских предприятий и организаций, в состав которых входят особо радиационно-опасные и ядерно-опасные производства

и объекты, осуществляющие разработку, производство, эксплуатацию,

хранение, транспортировку, утилизацию ядерного оружия,

компонентов ядерного оружия, радиационно-опасных

материалов и изделий

1. Государственное предприятие "Московский завод полиметаллов"

2. Производственное обединение "Машиностроительный завод "Молния"

3. Всерегиональное обединение "Изотоп"

4. Опытный химико-технологический завод

5. Акционерное общество "Промэлектромонтаж"

6. Федеральное государственное предприятие "База спецперевозок"

7. Государственный научный центр Российской Федерации -

Всероссийский научно-исследовательский институт неорганических материалов имени А.А.Бочвара

8. Всероссийский научно-исследовательский институт химической технологии

9. Научно-исследовательский и конструкторский институт энерготехники

10. Всероссийский научно-исследовательский институт технической физики и автоматизации

11. Научно-инженерный центр "Союзный научно-исследовательский институт приборостроения"

12. Государственный научный центр Российской Федерации - Институт теоретической и экспериментальной физики

13. Научно-исследовательский испытательный центр радиационной безопасности космических обектов

14. Государственный научный центр Российской Федерации - Институт биофизики

15. Завод "Медрадиопрепарат"

16. Государственный научный центр Российской Федерации - Научно­исследовательский физико-химический институт имени Л.Я.Карпова

17. Московский государственный инженерно-физический институт

(технический университет)

18. Государственный научный центр Российской Федерации - Российский научный центр "Курчатовский институт"

19. Московское научно-производственное обединение "Радон"




Тверской Государственный Университет




Тема : «Радиационно опасные объекты»


Дисциплина : «Защита населения и территорий в чрезвычайных ситуациях»


Группа :23


Выполнил : Хашин Виталий Анатольевич


Руководитель :


1.Введение…………………………………………………………...1

2.Радиационная опасность………………………………………..1

3.Радиационно опасные объекты………………………………...2

3.1.Ядерное оружие…………………………………………………3

3.2.Атомный флот…………………………………………………..4

3.3.АЭС……………………………………………………………….5

3.4.Производство радиоактивного топлива и захоронение радиоактивных отходов……………………………………………8

4.Заключение………………………………………………………..11


Приложение 1……………………………………………………….12

Приложение 2……………………………………………………….13

Приложение 3……………………………………………………….16


Литература:

    Кривошеин Д.А., “Экология и безопасность жизнедеятельности” М., 2000 г.

    Осипенко Л., Жильцов Л., Мормуль Н., “Атомная подводная эпопея” М., 1994 г.

3.Перечень предприятий и организаций, в состав которых входят особо радиационно-опасные и ядерно-опасные производства и объекты, осуществляющие разработку, производство, эксплуатацию, хранение, транспортировку, утилизацию ядерного оружия, компонентов ядерного оружия, радиационно-опасных материалов и изделий.

4.Я. Е. Белозеров, Ю. К. Несытов ”Внимание! Радиоактивное заражение” Военное издательство министерства обороны СССР М., 1982 г.

5 . У.Я.Маргулис Атомная энергия и радиационная безопасность. М., Энергоатомиздат, 1988г.

6. М.Ю.Вышенский, А.М.Русанов "Организационно-технические вопросы обучения по темам безопасной эксплуатации радиационно-опасных объектов" Пермское высшее военное командно-инженерное училище ракетны x войск, сборник статей "Воениздат".

7.У.Я.Маргулис Радиация и защита М.,1969г.

Согласно действующим нормам радиационной безопасности и основным санитарным правилам потенциальная опасность радиационного объекта определяется его возможным радиационным воздействием на население и персонал при радиационной аварии. Потенциально более опасными являются радиационные объекты, в результате деятельности которых при аварии возможно облучение не только работников объекта, но и населения. Наименее опасными радиационными объектами являются те, где исключена возможность облучения лиц, не относящихся к персоналу. По потенциальной радиационной опасности устанавливается несколько категорий объектов:

Радиационные объекты, при аварии на которых возможно их радиационное воздействие на население и могут потребоваться меры по его защите;

Радиационные объекты, при аварии на которых возможно их радиационное воздействие в санитарно-защитной зоне;

Объекты, при аварии на которых радиационное воздействие ограничивается территорией объекта;

Объекты, радиационное воздействие от которых при аварии ограничивается помещениями, где проводятся работы с источниками излучения.

Установление категории радиационного объекта базируется на оценке последствий аварий, возникновение которых не связано с транспортированием источников излучения за пределами территории объекта и гипотетическим внешним воздействием (взрывы в результате попадания ракеты, падения самолета или террористического акта). Категория радиационных объектов должна устанавливаться на этапе их проектирования. Для действующих радиационных объектов категории устанавливаются администрацией по согласованию с органами, осуществляющими государственный санитарно-эпидемиологический надзор.

Размещение радиационных объектов и зонирование территорий

При выборе места строительства радиационного объекта необходимо учитывать категорию объекта, его потенциальную радиационную и химическую опасность для населения и окружающей среды. Площадка для вновь строящихся объектов должна отвечать требованиям перечисленных правил. При выборе места размещения радиационных объектов должны быть оценены метеорологические, гидрологические, геологические и сейсмические факторы, влияющие на безопасность радиационных объектов при их нормальной эксплуатации и при возможных авариях. При выборе площадки для строительства радиационных объектов, на которых происходит обращение с радиоактивными веществами, следует отдавать предпочтение: участкам на малонаселенных незатопляемых территориях; с устойчивым ветровым режимом; с топографическими и гидрогеологическими условиями, ограничивающими возможность распространения радиоактивных веществ за пределы промышленной площадки объекта.



Потенциально опасные радиационные объекты должны располагаться с учетом розы ветров преимущественно с подветренной стороны по отношению к жилой территории, лечебно-профилактическим и детским учреждениям, а также к местам отдыха и спортивным сооружениям. Генеральный план радиационного объекта должен разрабатываться с учетом развития производства, прогноза радиационной обстановки на объекте и вокруг него и возможности возникновения радиационных аварий. Размещение радиационного объекта должно быть согласовано с органами, осуществляющими государственный санитарно-эпидемиологический надзор, с учетом перспектив развития, как самого объекта, так и района его размещения. Не допускается размещение источников ионизирующего излучения и работа с ними в жилых зданиях и детских учреждениях. Исключение - рентгенодиагностические аппараты с цифровой обработкой изображения, применяемых в стоматологической практике, максимальная рабочая нагрузка которых не превышает 40 мА мин/нед., при условии обеспечения требований норм радиационной безопасности для населения в пределах помещений, в которых проводятся рештеностоматологиче-ские исследования.

Санитарно-защитные зоны. Вокруг потенциально опасных радиационных объектов устанавливается санитарно-защитная зона, а вокруг радиационных объектов, при аварии на которых есть риск облучения населения, - также и зона наблюдения. Размеры санитарно-защитной зоны и зоны наблюдения вокруг радиационного объекта устанавливаются с учетом уровней внешнего облучения, а также величин и площадей возможного распространения радиоактивных выбросов и сбросов.



При расположении на одной площадке комплекса радиационных объектов санитарно-защитная зона и зона наблюдения устанавливаются с учетом суммарного воздействия объектов.

Внутренняя граница зоны наблюдения всегда совпадает с внешней границей санитарно-защитной зоны.

Санитарно-защитные зоны и зоны наблюдения вокруг судов и иных плавсредств с ядерными установками устанавливаются в местах их ввода в эксплуатацию, в портах стоянки и в местах снятия с эксплуатации.

Границы санитарно-защитной зоны и зоны наблюдения радиационного объекта на стадии проектирования должны быть согласованы с органами, осуществляющими государственный санитарно-эпидемиологический надзор.

В санитарно-защитной зоне радиационного объекта запрещается постоянное или временное проживание, размещение детских учреждений, а также не относящихся к функционированию радиационного объекта лечебных учреждений, предприятий общественного питания, промышленных объектов, подсобных и иных сооружений и объектов. Территория санитарно-защитной зоны должна быть благоустроена и озеленена.

В зоне наблюдения, на случай аварийного выброса радиоактивных веществ, администрацией территории должен быть предусмотрен комплекс защитных мероприятий в соответствии с требованиями раздела IV НРБ-99/2009.

В санитарно-защитной зоне и зоне наблюдения силами службы радиационной безопасности объекта должен проводиться радиационный контроль.

Учитывая многочисленные источники возможного радиоактивного загрязнения окружающей среды, создающие техногенный радиационный фон, необходимо определить радиационно-опасные объекты.

Радиационно-опасные объекты (РОО) - это объекты народного хозяйства, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, и загрязнение окружающей среды.

К ним относятся:

Учреждения, имеющие исследовательские ядерные реакторы и испытательные стенды;

Атомные станции (атомные электрические станции, атомные станции теплоснабжения, атомные энерготехнологические станции);

Урановые рудники;

Предприятия по переработке урановой руды и изготовлению ядерного топлива;

Предприятия по переработке отработанного ядерного топлива и захоронению радиоактивных отходов.

Аварийная ситуация может возникать при транспортировке, хранении твэлов и других источников с РВ.

Ядерная техника породила сложную проблему удаления радиоактивных отходов. Несмотря на то, что в настоящее время разработаны надежные, безопасные способы переработки и захоронения радиоактивных отходов, причиной загрязнения окружающей среды могут быть случайные аварии, связанные с разрушением хранилищ. Загрязнение окружающей среды РВ может происходить также при неправильном содержании мест переработки и хранении радиоактивных отходов. Радиоактивные нуклиды в качестве закрытых источников ионизирующих излучений широко используют в промышленности, медицине, сельском хозяйстве.

Радиоактивное излучение от этих источников может создавать опасность в окружающей среде только в результате их неудовлетворительного хранения.

Для нашей страны характерно еще и радиоактивное загрязнение отдельных ее регионов. Это результат ряда крупных радиационных аварий: на Чернобыльской АЭС, на ПО «Маяк», в Челябинске-65, Томске-7 и т.д.

Радиационную опасность могут представлять транспортные средства, имеющие ядерно-энергетические установки, а также военные объекты, на которых находятся ядерные боеголовки. Из числа РОО наибольшую потенциальную опасность для населения представляют атомные электростанции, аварии на которых могут привести к тяжелым радиационным последствиям (свидетельством являются события на ЧАЭС и Фукусиме).

Радиационно-опасный объект (РОО) К радиационно-опасным объектам относятся: атомные станции различного назначения; предприятия по регенерации отработанного топлива и временному хранению радиоактивных отходов; научно-исследовательские организации, имеющие исследовательские реакторы или ускорители частиц; морские суда с энергетическими установками; хранилища ядерных боеприпасов; полигоны, где проводятся испытания ядерных зарядов.










В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.


Радиационные аварии на РОО подразделяются на три вида Локальный – нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения.




Общий – нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно – защитной зоны и количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.


Существует 7 классов аварий: 7 класс - глобальная (разрушение активной зоны, значительный выброс радиоактивных веществ, угроза населению более чем 1-ой страны) 6 класс (разрушение активной зоны и выброс радиоактивных веществ; эвакуация населения в зоне радиусом 25 км.) 5 класс - авария с риском для окружающей среды (выброс радиоактивных веществ, необходимость защитных мер для населения) 4 класс - авария в пределах А.С. (нарушение активной зоны и облучение персонала, вызывающее острые лучевые заболевания) 3 класс - тяжелое происшествие (выход из строя оборудования, сопровождающийся высоким уровнем радиации; переоблучение персонала) 2 класс - происшествие средней тяжести (выход из строя оборудования, создающий угрозу гибели населения) 1 класс (неполадки в системе, не создающие угрозы)


Радиоактивность Радиоактивность и сопутствующие ей ионизирующие излучения существовали во Вселенной всегда. Самое неприятное свойство радиоактивного (ионизирующего) излучения его негативное воздействие на ткани живого организма, которое, к сожалению, может ощущаться лишь спустя некоторое время. Для измерения степени воздействия радиации существуют соответствующие измерительные приборы. Их цель выявить потенциально опасные источники излучения и тем самым обезопасить от них человека.




Альфа-излучение задерживается небольшими препятствиями (например, листом бумаги) и практически не способно проникнуть через наружный слой кожи. Этот вид излучения не представляет опасности до тех пор, пока радиоактивные вещества, испускающие альфа-частицы, не попадут внутрь организма. Пути проникновения могут быть разными: через открытую рану, с пищей, водой, вдыхаемым воздухом или паром.


Бета-частица обладает большей проникающей способностью: она проходит в ткани организма на глубину 1-2 см и более, в зависимости от величины энергии. Проникающая способность гамма- излучения, которое распространяется со скоростью света, очень велика: его может задержать лишь толстая свинцовая или бетонная плита.





I степень Легкая (I) степень (доза рад). Первичная реакция, если она развивается, стихает в день воздействия. В период разгара (на й неделе) изменения периферической крови ограничиваются снижением числа лейкоцитов в пределах 1,5 - 3,0 тыс./мкл, ускорением СОЭ до мм/ч. Могут определяться легкие астенические явления. Выздоровление, как правило, наступает без лечения.


II средняя Средняя (II) степень (доза рад). Первичная реакция до 24 ч, кратная рвота, общее недомогание, иногда субфебрильная температура. В период разгара число лейкоцитов в крови снижается до 0,5 - 1,5 тыс./мкл, тромбоцитов - до тыс./мкл, иногда возникает агранулоцитоз, повышается СОЭ до мм/ч. Выражены общие клинические проявления: инфекционные осложнения, кровоточивость, астенический синдром. Больные нуждаются в специализированной медицинской помощи.


III тяжёлая Тяжелая (III) степень (доза рад). Первичная реакция до 2 сут., многократная рвота, недомогание, субфебрильная температура. Возможна гиперемия кожи и слизистых оболочек. Латентный период продолжается до сут. Однако уже с конца 1-й недели возможно возникновение отечности, гиперемии, эрозий слизистых оболочек рта и зева. Изменения крови в сроки со 2-й до 5-й недели: падение числа лейкоцитов до клеток/мкл, тромбоцитов - менее 30 тыс./мкл, СОЭ мм/ч. Лихорадка, тяжелые инфекционные и геморрагические осложнения. Смертельные исходы возможны начиная с 3-й недели. Больные нуждаются в своевременном специализированном лечении.


IV тяжёлая Крайне тяжелая (IV) степень (доза рад и более). В зависимости от уровня воздействия проявляется в различных клинических формах. В диапазоне доз рад развивается форма лучевой болезни, в основе патогенеза которой лежит депрессия кроветворения, но в клинической картине существенное место занимает также поражение желудочно-кишечного тракта. Она может быть охарактеризована как переходная. Первичная реакция продолжается в течение сут., возможны общая кожная эритема, жидкий стул. С х суток могут выявляться кишечные нарушения. В дальнейшем - типичная клиника лучевой болезни тяжелой степени. Смертельные исходы наступают с конца 2-й недели. Выздоровление небольшой части пораженных возможно лишь при лечении в условиях специализированного стационара.


Уровни опасности радиации с которыми мы сталкиваемся в повседневной жизни и они могут вредными для здоровья. Измерения в миллизивертах (мЗв) мЗв Когнитивные нарушения, судороги и смерть в течение нескольких часов воздействия мЗв Внутреннее кровотечение, смерть в течение 2 недель после поражения мЗв Средняя дозировка, зафиксированная у рабочих на Чернобыльской АЭС. Которые умерли в течение месяца.


Первая медицинская и доврачебная помощь - при радиационных поражениях предусматривает ослабление начальных признаков лучевой болезни. С этой целью для профилактики первичной реакции принимают противорвотное средство (этаперазин) и радиозащитный препарат.




ПРОФИЛАКТИКА Мероприятия по предупреждению лучевой болезни, в том числе радиационных поражений нервной системы, определяются условиями облучения. В случаях вероятности профессионального облучения предусматриваются отбор лиц для работы с излучением и радиоактивными веществами и освидетельствование работающих не реже 1 раза в год, осуществляемые медицинской комиссией. Комиссия может выносить постановления не только о годности к работе, но и о временном переводе на другую работу, стационарном или санаторном лечении.


Радиационное воздействие на человека заключается в нарушении жизненных функций различных органов (кроветворения, нервной системы, желудочно- кишечного тракта) и развития лучевой болезни. Внешнее облучение при прохождении радиоактивного облака Внешнее облучение, обусловленное радиоактивным загрязнением поверхности земли. Зданий, сооружений и т.п. Внутреннее облучение при вдыхании радиоактивных аэрозолей, продуктов деления (ингаляционная опасность) Внутреннее облучение в результате потребления загрязненных продуктов питания и воды Контактное облучение при попадании радиоактивных веществ на кожные покровы и одежду


КЛАССИФИКАЦИЯ ВОЗМОЖНЫХ ПОСЛЕДСТВИЙ ОБЛУЧЕНИЯ ЛЮДЕЙ РАДИАЦИОННЫЕ ЭФФЕКТЫ ОБЛУЧЕНИЯ ЛЮДЕЙ СОМАТИЧЕСКИЕ (последствия воздействия облучения,сказывающиеся на самом облучённом, а не на его потомстве) ОСТРАЯ ЛУЧЕВАЯ БОЛЕЗНЬ ХРОНИЧЕСКАЯ ЛУЧЕВАЯ БОЛЕЗНЬ ЛОКАЛЬНЫЕ ЛУЧЕВЫЕ ПОВРЕЖДЕНИЯ (ЛУЧЕВОЙ ОЖОГ,КАТАРАКТА ГЛАЗА, ПОВРЕЖДЕНИЕ ПОЛОВЫХ КЛЕТОК) СОМАТИЧЕСКО- СТОХАСТИЧЕСКИЕ (трудно обнаруживаемые.так как они незначительны и имеют длительный скрытый период измеряемый десятками лет после облучения) Сокращение продолжительности жизни Злокачественные изменения кровообразующих клеток Опухоли органов и клеток ГЕНЕТИЧЕСКИЕ (врождённые уродства, возникающие в результате мутаций, изменения наследственных свойств и других нарушений в половых клеточных структурах облучённых людей)




Множество радиоактивных материалов и продуктов их распада входят в состав Земли. Уровни земной радиации радиационного фона неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в том или ином участке земной коры на той или иной глубине. Солнечная радиация и радиационный баланс








Применение противорадиационных препаратов Чтобы снизить тяжесть последствий ионизирующих излучений на организм человека, применяются специальные химические вещества (радиопротекторы). Они повышают защитные свойства организма, делают его более устойчивым к ионизирующим излучениям.





Источники Медтко-санитарная подготовка учащихся Под ред. П.А.Курцева Москва, Просвещение Основы защиты населения и территорий в чрезвычайных ситуациях. Под ред. акад. В.В. Тарасова. Издательство Московского университета Неотложные состояния и экстренная медицинская помощь. Справочник. Под ред. Е.И.Чазова. Москва. Медицина Справочник практического врача. Под ред. акад. А.И.Воробьёва. Москва. Медицина ФЗ 68 от г. "О защите населения и территорий от ЧС природного и техногенного характера" Вознесенский В.В., Зайцев А.П. "Новейшие средства защиты органов дыхания и кожи", библиотечка журнала "Военные знания", М, 1996 г. Вредные химические вещества. Радиоактивные вещества. Справочник. Под общ. ред. Л.А.Ильина, В.А.Филова. Ленинград, Химия



Просмотров